

# Journal of Vibration Engineering

ISSN:1004-4523

Registered



**SCOPUS** 



DIGITAL OBJECT IDENTIFIER (DOI)



**GOOGLE SCHOLAR** 



**IMPACT FACTOR 6.1** 



# **Extended Chatterjea's Fixed Point Theorem on CM- Spaces Depended on Another Function**

### K. Prudhvi

Department of Mathematics, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana, India.

Abstract: In this paper, we obtain a unique fixed point result that is ,extended Chattejea's fixed point theorem on CM-Spaces depended an another function. Our result is generalization results of some of the well known existing results in this literature.

**Keywords:** Fixed point, contractive mapping, sequentially convergent and sub sequentially convergent.

2000 Subject Classification: 47H10; 54H25.

#### 1. INTRODUCTION

In a Banach contraction mapping principle fixed point theorem is most cited one(see [4] or [6]), which asserts that if  $(X, \rho)$  is a CM(Complete Metric)- space and A:  $X \rightarrow X$  is contractive mapping , that is there exists  $\alpha \in [0,1)$  such that for all  $x, y \in X$ ,  $\rho(Ax, Ay) \leq \alpha$   $\rho(x, y)$ . Then A has a unique fixed point. In 1968 Kannan [5] established a fixed point theorem which is also most cited result. Subsequently many authors studied and extended and generalized these results (see for e.g. [1-3], [7-11] ). In 1977, B.E.Rhodes [11] considered different types of contractive conditions and canalized the relationship among them. In 2000 Branciari [4] introduced a class of generalized metric space. In 2008 Azam and Arshad [1] extended the Kannan's fixed point theorem in this kind of generalized metric spaces. Recently ,Moradi [7] obtained a result . In this paper we obtain a result, extended Chattejea's fixed point theorem on CM-space which depends on another function.

#### 2. PRELIMINARIES

The following are we needed getting the main results which ar due to [7].

**Definition 1.1.** Let  $(X, \rho)$  be a metric space . A mapping  $A: X \to X$  is said to be sequentially convergent if we have ,for every sequence  $\{x_n\}$ , if  $\{Ax_n\}$  is convergence, then  $\{x_n\}$  is also convergence. A is said to be sub sequentially convergent if we have , for every sequence  $\{x_n\}$ , if  $\{Ax_n\}$  is convergence then,  $\{x_n\}$  has a convergent sub sequence.

**Definition 1.2.** Let X be a nonempty set. Suppose that the mapping A:X $\rightarrow$ X, satisfies

- (i)  $\rho(x, y) \ge 0$  for all  $x, y \in X$  and  $\rho(x, y) = 0$  if and only if x = y;
- (ii)  $\rho(x, y) = \rho(y, x)$  for all  $x, y \in X$ ;

**(1)** 

(iii)  $\rho(x, y) \le \rho(x, w) + \rho(w, z) + \rho(z, y)$  for all  $x, y \in X$  and for all distinct points  $w, z \in X \setminus \{x, y\}$ . Then d is called a generalized metric and (X, d) is a generalized metric space.

#### 3. MAIN RESULTS

**Theorem 2.1**. Let  $(X, \rho)$  be a CM-Space and A, B: $X \rightarrow X$  be mappings such that A is continuous, one-to-one and sub sequentially convergent . If  $\alpha \in [0, \frac{1}{2})$  and

$$\rho(ABx, ABy) \le \alpha [\rho(ABx, ABy) + \rho(ABx, ABy)].$$
 ...

For all  $x,y \in X$ , then b has a unique fixed point . Also A is a sequentially convergent , then for every  $x_0 \in X$  the sequence of iterates  $\{B^n x_0\}$  converges to this fixed point.

```
Proof: Let x_0 be an arbitrary point in X. We define the iterative sequence \{x_n\} by x_{n+1} =
         (equivalently x_n = B^n x_0) n = 1,2,3... using (1) we have
                     \rho(Ax_n, Ax_{n+1}) = \rho(ABx_{n-1}, ABx_n)
                                         \leq \alpha [\rho(Ax_{n-1}, ABx_n) + \rho(Ax_n, ABx_{n-1})]
                                          \leq \alpha [ \rho(Ax_{n-1}, Ax_{n+1}) + \rho(Ax_n, Ax_n) ]
                                          \leq \alpha [\rho(Ax_{n-1}, Ax_n) + \rho(Ax_n, Ax_{n+1})]
                     \rho(Ax_n, Ax_{n+1}) \le \alpha/1-\alpha [\rho(Ax_{n-1}, Ax_n)]
                                          \leq h \ \rho(Ax_{n-1},\ Ax_n), where h=\alpha/1-\alpha<1.
(2)
By the same argument
\rho(Ax_n, Ax_{n-1}) \le h \ \rho(Ax_{n-1}, Ax_n) \le h^2 \ \rho(Ax_{n-2}, Ax_{n-1}) \le \dots \le h^n \ \rho(Ax_0, Ax_1) \dots
(3)
By (3) for every m,n \in \mathbb{N} such that m > n we have
\rho(Ax_m,\ Ax_n) \leq \ \rho(Ax_m,\ Ax_{m\text{-}1}) \ + \ \rho(Ax_{m\text{-}1},\ Ax_{m\text{-}2}) + \ldots + \ \rho(Ax_{n\text{+}1},\ Ax_n)
                   \leq [h^{m-1} + h^{m-2} + ... + h^n] \rho(Ax_0, Ax_1)
                   = h^n [1+ h+ h^2+...] \rho(Ax_0, Ax_1)
                   \leq h^n / 1-h \rho(Ax_0, Ax_1), letting m, n \rightarrow \infty we get that
\{Ax_n\} is a Cauchy sequence and X is a CM-Space there exists q \in X such that
\lim_{n\to\infty} Ax_n = q.
Since A is sub sequentially convergent, \{x_n\} has has a sub sequence. So there exists
p \in X and \{x_{n(r)}\}\ (r = 1, 2, ... \infty) such that \lim_{r \to \infty} x_{n(r)} = p.
                                       \lim_{r\to\infty} x_{n(r)} = p, \lim_{r\to\infty} Ax_{n(r)} = Ap.
                                                                                                      By (5) we
Since A is continuous and
conclude that Ap= q. So
      \rho(ABp,\ Ap) \leq \ \rho(ABp,\ AB^{n(\ r)}x_0\ ) + \rho(AB^{n(\ r)}x_0\ ,\ AB^{n(\ r)+1}x_0\ ) + \ \ \rho(\ AB^{n(\ r)+1}x_0,\ Ap)
                         \leq \alpha \left[ \rho(ABp, AB^{n(r)}x_0) + \rho(AB^{n(r)-1}x_0, ABp) \right] + h^{n(r)} \rho(Ax_1, Ax_0)
                                                          + \rho(Ax_{n(r)+1}, Ap)
                         \leq \alpha \left[ \rho(ABp,\ Ax_{n(r\,)}\,) + \rho(\ Ax_{n(r\,)-1},\ ABp\ ) \, \right] + h^{n(r\,)} \ \rho(\ Ax_1,\ Ax_0)
                                                           + \rho(Ax_{n(r)+1}, Ap). Letting n(r) \rightarrow \infty
                          \leq \alpha \left[ \rho(ABp, Ap) + \rho(Ap, ABp) \right]
                           \leq 2\alpha[\rho(ABp, Ap)]
\rho(ABp, Ap) \le 0. Implies that ABp = Ap. Since A is one –to –one we get that
```

 $\rho(ABp, Ap) \le 0$ . Implies that ABp = Ap. Since A is one –to –one we get that Bp = p. Therefore B has a fixed point. Since (1) holds and A is one –to-one, B has a unique fixed point.

Now if A is sequentially convergent by replacing  $\{n\}$  with  $\{n(r)\}$  we conclude that  $\lim_{r\to\infty} x_n = p$  and this shows that  $\{x_n\}$  converges to the fixed point of B. This completes the proof of the theorem.

**Conclusion:** Our results are general and they are the generalization results of [7].

## **Acknowledgments**

The author thanks to the reviewers to review this article and give the valuable suggestions and in the present form this research article.

# **REFERENCES**

- [1] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, The J. Nonlinear Sci., 1(2008), no. 1, 45-48.
- [2] A. Beiranv and, S. Moradi, M. Omid and H. Pazandeh, Two Fixed-Point Theorem

- For Special Mappings, arXiv:0903.1504 v1[math; FA], 9 Mar(2009), 1-6.
- [3] A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces Publ. Math. Debrecen, 57 1-2(2000), 31-37. 1, 1,1.2
- [4] K.Geobel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, New York, 1990.
- [5] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.1, 1.
- [6] M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and fixed point theory, John Wiley and Sons, Inc., (2001).
- [7] S. Moradi, Kannan fixed point theorem on complete metric spaces and on generalized metric spaces depended an another function, arXiv:0903.1577 v1[math; FA], 9 Mar (2009), 1-6.
- [8]K. Prudhvi, A fixed point result of four self-mappings on generalized contractive Type conditions in cone metric spaces, **Non Linear Analysis Forum**, 23(2) (2018), 25-33
- [9] K.Prudhvi, Study on "Fixed Point Results" for Pair of Maps in CMS, Asian Basic and Applied Research Journal, Volume 5, Issue 1, (2023), 129-131.
- [10].K. Prudhvi, A unique common fixed point theorem in cone metric spaces, Advances in Fixed Point Theory, 3(2013), No.1,70-76.
- [11]. K. Prudhvi, Study on Fixed Points for OWC in Symmetric Spaces, Asia Mathematika, Vol.7, Issue 3, (2023), 72-75.
- [12] B. E. Rhoades, A Comparison of Various Definitions of Contractive Mappings, Trans. Amer. Math. Soc. 226(1977), 257-290.