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Abstract—In conventional integral control, increasing the gain 
K, though desirable value for reducing time error, can make the 
system response oscillatory . But in variable structure controller, 
itisfoundtohavebeneficialeffect.Inthispaper,attempt have been 
made to design a variable structure power system 
stabilizer(VSPSS)byselectingfavorablyplacedeigenvalues and the 
switching vector C, to achieve the desired dynamic performance. 
When the system is operates in the sliding mode, the response of 
the system is insensitive to plant parameter 
variations.[1]Thecontrollerselectedhasmanyattractivefeatures 
like robustness towards parameter variations, modeling errors 
and unknown disturbances. It is simple in design and reduced 
order dynamics when in sliding mode.[2] Two distinct types 
ofthesystemoscillationsareconsideredinthepaperi.eunitsat a 
generating station swinging with respect to the power system 
calledas‘localplantmodeoscillations’andtheswingingofmany 
machines in one part of the system against called as ‘interarea 
mode oscillations’. 

Index Terms—VSS, Power system stabilizer, Pole placement 
technique, slide mode controller. 

 
I. INTRODUCTION 

High initial responses, high gain excitation systems 
equipped with power system stabilizers (PSS) have been 
extensively used in modern power systems as an effective 
means of enhancing the overall system stability. A linear 
dynamic model of the system obtained by linearization of a 
nonlinear model around a normal operating point is usually 
adopted in PSS design.[3] 
To ensure the quality of power system stabilizers, it is neces- 
sary to design a control system, which deals with the controlof 
loading of the generator depending on the frequency. Many 
techniques for PSS have been proposed since 1980s. When 
controller is designed, one of the problems is the parametric 
uncertainty in the power systems.[4] Therefore, in the design 
of controllers the uncertainties have to be considered .The 
usual design approach for PSS frequency controller employs 
the linear control theory to develop control law on the basis of 
the linearised model with fixed system parameters. However, 
as the system parameter cannot be completely known , [5] so 
the controller designed based on fixed parameter model may 
not work properly for the actual plants. Hence, it is important 
to consider linearized model. 
Inthispaper,aschematicapproachbasedonpoleplacement 
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technique is developed for specifying the elements of switch- 
ing vector.[6] The VSS controller changes the structure in 
accordance with some law of structural change. This facili- 
tates, the new system to possess new properties which wasnot 
present in any of the individual structures previously. It can 
further be integrated with slide mode control to enhance 
dynamic performance of system.[7] 
Many techniques for PSS have been proposed since last two 
decades. Hsu and Chen [8] proposed optimal VSPSS for a 
machine infinite bus system as well as for a multi-machine 
system. The proposed VSPSS is optimal in the sense that the 
switching hyperplane is obtained by minimizing a quadratic 
performanceindex,theoptimalselectionofwhichisextremely 
difficult.TheoptimalH− n/KapproachgivenbyChen and Malik 
[9] has some complexity like choosing both the 
uncertaintyweightingfunctionandtheperformanceweighting 
functioncarefully.Alsothecontrolsbasedonthelineartheory are 
restricted in performance for controlling the non-linear plant 
like the power system [10]. 
The variable structure controllers are insensitive to system 
parameter variations therefore, their realization is simple. A 
systematic procedure for the selection of the switching vector 
is extremely important for the design of VSCs.[11] 
In this paper, attempt have been made to design a VSPSSsuch 
that the resulting motion is described by equations with 
favorably placed eigenvalues. It should be noted that the 
desired locations of the poles of a closed loop system can be 
more conveniently prescribed to achieve the desired dynamic 
performance, and hence the switching vector C, as compared 
totheselectionofweightingmatricesneededtoachievethede- 
sireddynamicperformanceandhenceCasincaseofoptimum 
VSPSS. The controller uses in this paper possesses attractive 
features like robustness to parameter variations, modeling 
errorsandunknowndisturbances,simplicityindesign,reduced 
order dynamics when in sliding mode. The simulation results 
oftheVSCtheoryshowsdominanceoverconventionalcontrol 
theory,sensitivityanalysisshowingrobustnessoverparameter 
variations and the model following approach is successfully 
applied as shown by changing parameters by 25% to 50% to 
show the efficacy of this control method. 

II. SYSTEMUNDERCONSIDERATION 

The system investigated, comprises a synchronousgenerator 
connected to an infinite bus through a double-
circuittransmissionline.Atype1excitationsystemmodel 
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[12], which neglects saturation of the exciter and voltagelimits 
of the amplifier output, has been considered. 
Two distinct types of the system oscillations are usually 
encounteredinaninterconnectedpowersystem[10].Onetype is 
associated with units at a generating station swinging with 
respecttothepowersystem.Suchoscillationsarereferred to as 
‘local plant mode oscillations’.[13]The frequencies of these 
oscillations are typically in the range 0.8 – 2.0 Hz. The second 
type of oscillations is associated with the swinging of 
manymachinesinonepartofthesystemagainstmachines in other 
parts. These are referred to as ‘interarea mode oscillations’, 
and have frequencies in the range 0.1 – 0.7 Hz. 
ThebasicfunctionofthePSSistoadddampingtoboth types of 
oscillations. 
Itshouldbenotedthatonlyalocalmodeoftheoscillation is 
encountered in a simple machine-infinite bus system and 
hencetheeffectivenessofthePSSindampinginterareamodes of 
oscillations cannot be studied with a machine-infinite bus 
system. 
The overall excitation control system (including PSS) is 
designed to: 
1. Maximize the damping of the local plant mode oscillations 
as well as interarea mode without compromising the stability 
of other modes. 
2. Enhancethesystemtransientstability. 
3. Not adversely affect system performance during major 
system upsets which cause large frequency excursions. 
4. Minimize the consequences of excitation system 
malfunction due to component failures. 

 
A.DynamicmodelforPSS 

In general, the power system models are complex, 
nonlinear, dynamic in nature.[10] The usual practice is to 
linearise the model around the operating point and then 
develops the control laws. Since the system is exposed tosmall 
changes in loads during its normal operation, the linearised 
model will be sufficient to represent the power system 
dynamics. The simplified schematic diagram of a single-bus 
system is shown in Figure 1 [9]. 

The Linerised model is shown in Figure 2, where the 
expressions for parameters K1, K2 , .............., K6 are asshown 
below [10] 
The steady-state values of the d-q axis voltage and current 

components for the machine infinite-bus system for the 
nominal operating conditions are given below. These are 
expressed as functions of the steady-state terminal voltage 
Vtoand steady-state real and reactive load currents IPOand 
IQOrespectively. 

 
Eq0=[(Vt0+IQ0xq)2+(Ip0xq)2]1/2 (1) 

 
V0=[(Vt0−IP0re−IQ0xe)2+(IP0xe−IQ0re)2]1/2(2) 

 

 

 
Fig.1.Powersystemconfigurationforthesinglemachineinfinitebussystem 

 
 
 
 

 

 
Fig.2.Linearisedsmallperturbationmodelofgeneratorconnectedtoinfinitebus 
through transmission line 

sinδ0 = [Vt0−Ip0(xq+xe)−rexq(I2 
2
 )− 
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Vt0Iq0re]Eq0V0 (3) 
 

IQ0=IP0Vt0/Eq0 (4) 
 

Ido=[I2xq+IQ0(Vto+IQ0xq)]/Eqo (5) 
 

Vq0=[(Vt0+IQ0xq)/Eq0]Vt0 (6) 
 

Vdo=IQ0xq (7) 

The dynamic model of the system is obtained from the 
transferfunctionmodel(Figure.6.2)instatespaceformas. 
x˙=Ax+Bu+F∆d (21) 
Where, 
x=Statevariablevector 
u=Controlinputvector 
∆d=Disturbances or nonlinearities input vector 
A=State matrix (6 X 6 ) 
B=Controlmatrix(6X1) 
F=Disturbances or nonlinearities matrix (6 X 1) 
Here in PSS the, 

′ 
q0 qo +x′Ido (8) 

∆w
 

Where, 
Id,Iq=directandquadratureaxiscomponentsofthearmature ∆δ 
currents 
V,V=directandquadratureaxiscomponentsoftheterminal 

x=
∆E′ 
  

(22) 

voltage 
E′=voltageproportional to direct axis flux linkages δ=angle 
between quadrature axis and infinite bus V0=infinite bus 
volta 
Eq=open-circuited terminal voltage 
Subscript 0=steady state value 
The constants K1 – K6 are evaluated using the relations given 
below considering zero external resistance i.e. re= 0 for the 
sample problem investigated [14]. 

∆VR 
∆VE 

∆d=∆Tm 

 

K1= xq−x′

xe+x′
 Q0V0sinδ0+ Eq0V0cosδ0

xe+xq 
(9) 

 

V0sinδ0
xe+x′d 

 
x′d+xd 
xd+xe 

(10) 
 

(11) 
 

K4=xd−x′dV0sinδ0 (12) 
d 

0
 

 

1 
K5=xe+xqVto

V0cosδ0−xe+x′dVt0
V0cosδ0 (13) 

 V B= ; F=  (23) 
K6= xe qo (14) 0 0 

xe+x′dVto K   

Thestateequationscanbewritten[24], 

A 0 
 

III. DESIGNOFVARIABLESTRUCTURECONTROLLER: 

Thebasicphilosophyofthevariablestructureapproach is 
simply obtained by contrasting it with the linear state 
regulator design for the single input system. 

 
x˙ =Ax+Bu (24) 

 
In the state regulator design, the structure of the feedback 
isfixed as 

 

u=−KT (25) 
 

ThestatefeedbackgainvectorKischosenaccordingto 
variousdesignprocedures,suchaseigenvalueplacementor 

E 

K2= 

K3= 

2H 

 
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quadraticminimization. 
The variable structure controller design problem is then select 
the parameters of each of the structures and to define the 
switching logic [4]. . 
The change in structure of the controller takes place on the 
hyper plane 

 
s=CT=0 (26) 

 
Where C is a constant vector. This hyper plane is also calledas 
the switching hyper plane. 
Whenthecontrolsignaluisafunctionofthestatevector x 
undergoes discontinuities on the plane s = 0, the velocity 
vector also undergoes discontinuities on the same plane. Ifthe 
trajectories are directed towards the plane s = 0, sliding mode 
will appear in the plane. The pair of inequalities, 

 
limx→0−s˙>0andlimx→0−s˙<0 (27) 

 
aresufficientconditionfortheslidingmodetoexist. 
The control signal is a piecewise linear function of x with 
discontinuous coefficients u = −ΨTx 

IV. SELECTIONOFASWITCHINGVECTORUSINGPOLEASSIGN

MENT TECHNIQUE 

 
The design procedure is to select a switching vector using 

pole assignment technique as described below [4], [6]: 
Consider the linear system, 

 
x˙ =Ax+Bu (30) 
where x is a state vector of dimension (nx1), u is controlvector 
of dimension (mx1) and A and B are constant matrices of 
dimensions (n x n) and (n x m) respectively. 
Definethecoordinatetransformation 

 
z=Mx (31) 

 
Suchthat 

 

MB=
0 (32) 

B2 
WhereMisanon-singular(nxn)matrixandB2isa non-singular (m 
x m) matrix. 

 
−1 

α ................................ fxs>0 
z˙=MAM z+MBu (33) 

βi............................................ fxis<0 

whereαiandβiareconstantsandi=1,2,. ............ ,n. 
Itshouldbenotedthattheswitchingofthestatefeedback 

Fromequation(24)and(31)andusingequation(32),equation 
(33)canbewrittenintheform, 

z˙1=A11 A12z1+0
 

(34)
 

gainsoccurondiscontinuityItshouldbenotedthattheswitchingofth
estatefeedbackgainsoccurondiscontinuity 

z˙2 A21 A22 z2 B2 

plane s = 0. The choice of controls should ensure that 
theygiverisetotheslidingmodeondiscontinuityplanes=0. The 
switching vector C is chosen so that sliding motion hasthe 
desired properties. 
Sincen=6andm=1, 

 
T 

C1C2C3C4C5C 
vector. 

 
Thecontrollawisoftheform 

u=−
Σ6 Ψixi 

 
wherethepreciseconstantgainsΨaregivenbyaboveequation (28). 
Thedesignprocedureconsistofdeterminingtheelements 

where,A11,A21,A12,A22arerespectively[(n-m)x(n-m)], [(n-m) x 
m],[m x (n-m)], and [ m x m ] submatrices. 
Hence, 
z˙1=A11z1+A12z2 
z˙2=A21z1+A22z2+B2u (35) 

 
The equation for the switching surface as (26) referring again 
i.e., 

 
s=CTx=0 i=1,2,3 ........ n 
Hence,weget, 
s=CTM−1z=0 i=1,2,3 ........ n 

 
specifies the motion of the system in the sliding mode. 
Writing, 

oftheswitchingvectorCandthefeedbackgainsΨsothat 
thecontroluwhichdependsonthemcansatisfycertain 

CTM−1=CT C2
 

(36) 

practically acceptable dynamic performance measures and 
retain the nominal frequency of the system in steady state. 
These dynamic measures relate to the rise time, overshoot, 
settlingtime of the systemor performance index ofthe system 

where C1and C2are n-1 column vector and scalar 
respectively. 
Equations(35)and(36)uniquelydeterminethedynamics in the 
sliding mode over the intersection of the switching hyperplane 
s(x)=0. We can write, 

Ψ= 
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A11−A12Ci.e.Acintheslidingmodecanbeplaced 

1 x2 

    

 


 

 

 

0 0 0 0.1 2.0 0 

 

  

0 
0 
0 

x= = 

 

0 

 

  
0 
0 

    

0 

 

s=CTz1+C2z2=0 (37) 
 

Thesubsystemdescribedbyequation(35)mayberegarded as 
an open loop control system with state vector z1and 
controlvectorz2,withoutlossofgenerality,weassumethat C2= 
1 and the form of control z2being determined by equation 
(1.36), that is, 

 
z2=CTz1 (38) 

 
Using equation (35) and (38) we obtain the equations of the 
sliding mode in closed loop form as 
z˙1=(A11−A12CT)z1=Acz1 (39) 

xe=0.4re=0.0 
 

Operationcondition: 
 

P=1.0 Q=0.05 
Vr0=1.0f=50Hz 

The initial d-q axis current and voltage components and 
torque angle needed for evaluating the K constants are 
obtained from the steady-state equations given in (1) to (8). 
These are as follows: 

Vd0= 0.8211p.u Id0= 0.8496p.u Eq0=0.8427p.u 
Vq0=0.5708p.u Iq0=0.5297p.u. V0=1.0585p.u. 

1 
δ0=77.400p.u. 

The eigenvalue of the matrix Acmay be placed 
arbitrarilyinthecomplexplane.Ifpair(A,B)iscontrollablethent
hepair(A11,A12)isalsocontrollable.Ifthepair 
(A11,A12)iscontrollablethentheeigenvaluesofthematrix 

T 
1 

arbitrarilybyasuitablechoiceofvectorC1. 
Hence, the algorithm for realization of switching vector and 
switching hyperplane can be summarized as follows: 

 
1) SelecttransformationmatrixMthatsatisfyequation(32). 

TheconstantsK1–K6areevaluatedusingtherelationsgiven 
(9)to(14)consideringzeroexternalresistancei.e.re=0.0 
forthesampleprobleminvestigated.Wegetthesevaluesas: 

 
K1=1.15839 K2=1.43471 K3=0.36 
K4=1.83643K5=−0.11133K6=0.31711 

Afterdesigningtheswitchingvectorusingpoleassignment technique 
the results are : 
Thestatespacemodelisgivenbyspecifying 

2) ComputethevectorC1suchthattheeigenvalues 
λ1,λ2 ........ λn−1ofthematrix(A1−A1CT) orAccharacterizing the 
dynamics in the sliding mode has desired placement. 

∆ω

 
 


x1
 

  
∆E′q x3 

3) Choosetheequationoftheswitchinghyperplanetobe 
oftheforms = [C1T1]Mx = 0 

 
4) Generallyassume,C1=[C11C12 ............ C1n−1]T(40) 

 
 

V. EXAMPLE 

∆Efd x4 
∆VR x5 
∆VE x6 
0 −0.1158−0.1435 0 0 0 

314 0 0 0 0 0 

x˙=
0 −0.3061−0.46300.1667 0 0 
 

 
 


x+ 
 

ConsiderthePSSsystemasshowninFigure2andthe 
0 111.330 −317.11 0 −20.0−1000 
0 0 0 0.01 0.2 −2.0 

problemofasinglecontrolarea.Thenominalparametersof 0 
thesystemandtheoperatingconditionsusedforthesample 


0.1


 

  
probleminvestigatedaregivenbelow[14],[15].  u+ ∆Tm 
Alldataaregiveninperunitofvalue,exceptthatHand 

time constants are in seconds. 
Generator: 

1000 
 

 
 

0 
 

 

H=5.0sT′d0=6.0s 
Letusassume, 

xd=1.6 x′d=0.32 xq=1.55 

IEEEtype-1excitationsystem: 
C1=C11 C12 C13 C14 C15 

T (41) 

KA=50.0TA=0.05s 
KE=−0.05TE=0.5s 
KF=1.55TF=0.5s 

Transmissionline: 

Now,herewehavetofindtheC1Tforthedesiredeigenvalues or pole 
placement. 

 
The characteristic equation of the described system is 

S5+(C15−a55)S4+(C14−a54)S3+(C13+a53S2)+ 
(C12−a52)S+(C11−a51)=0 (42) 

0 

 

 ∆δ 
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  

  
0 

  

72.068)S2+(C12–1.477)S+(C11–0.61)=0 (43) 

∆V 



 

x5


 

Hence,theswitchingvectorC=MCT CT
andC2=1 0 

720 

 

 

  

 

R 

1 2 

 
Equation(42)reducesto, ∆ω


 
 


x1
 

  
S5+(C +2.363)S4+(C +37.053)S3+(C ∆E′q x3 + x= = 

15 14 13 ∆Efd
 

 

x4 

∆VE x6 
Here,letthedesiredpolesareatlocations, 

λ1=−8.0 λ2=−8.5λ3=−9.0λ4=−9.5 
λ5=−10.0 

Fromthiswegetthedesiredcharacteristicequation.As 

 
S5+45.0S4+808.75S3+7256.25S2+32501.5S+ 
58140=0 (44) 

 
Bycomparing(43)and(44),wewillget, 

C =42.637 

For the above values of A, B and F, and when xe=0.4 ,we 
get the characteristic equation as, 

 
S6+22S5+284S4+1011S3+8923S2+6095S+11021 

 
Letthemodelselectediscriticallydampedmodelsuch that , 

 

 
Ifthismodelhastheeigenvaluesas–1,-2,-3,-4,-5and –6 and we 

are representing state model in (6.61) in phase canonical form, 
then we have, 

15 
C14=771.697 
C13=7184.182 

0 1 0 0 0 0 
0 0 1 0 0 0 

  
C12
C11 

=32502.977 
=58140.61 

Am= 

 
 

 

0 0 0 1 0 0 
0 0 0 0 1 0 

0 0 0 0 0 1 
 

 
 

(49) 

C1=C11 C12 C13 C14 
T 

C15 


0
 

C1=[−82146.276188.8182647.961−32.674539.925] 

 

0 

Bm= 0 
  

 
(50) 

∴C= [−82146.276188.8182647.961−32.6741.0539.925]( 4 5 T)heswitchingsurfaceσ= Ceischosenas, 

Also,thecontrolsignaluisgivenbytheequation(30)and 

canbewrittenas 

u=−Ψ1x1−Ψ2x2 
 
—Ψ3x3 

 
—Ψ4x4 

 
—Psi5x5 

 
—Ψ6x6 

 
(46) 

σ=C1e1+C2e2+C3e3+C4e4+C5e5+C6e6 
σ˙=C1e˙1+C2e˙2+C3e˙3+C4e˙4+C5e˙5+C6e˙6 
where, 

 

The gains Ψ are chosen in such a way that control effort 
required is moderate and making use of the performanceindex 
[5]. Their values are taken as 

e 1̇=e2 
e˙2=e3+0.0001∆Tm 
e˙3=e4+0.0023∆Tm 

α1=α2=15 α3=0α4=0α5=0α6=0 
e˙4=e5−0.0066∆Tm 
e˙5=e6−0.0941∆Tm 

β1=β2=−15 β3=0 β4=0 β5=0 β6=0 
 
 

 
VI.  VARIABLE STRUCTURE MODEL 

FOLLOWINGCONTROLLERDESIGNFORPSSSYST

EM 

e˙6=–720xm1−1764xm2–1204xm3–665xm4–175xm5− 
21xm6+ 720r+11021x1+6095x2+8923x3+1011x4+ 
284x5 +22x6−u+1.2674∆Tm (51) 

 
Theswitchingvectorwasdesignedbyusingpoleplacement technique 
as explained before. 
Thepolesofthematrix[A11–A12C11]werechosenas:- 

m m 

Thestatespacemodelofplantisconsideredas, 

 
x˙=Ax+Bu+F∆Tm (47) 

and 

-8.0 , -8.5 , -9.0 , -9.5 and -10.0 . The transformation 
matrixconsidered was, 

 
M=I6=6X6 IdentityMatrix 

−729−1764−1204−665−175−21 ,weget, 1 FurthermakingthemanipulationT−1CT 

∆δ 
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Hence,weget, 

 
CT=5814032501.57256.25808.75451

 
(52) 

 
Theerrorisdefinedas, 

 
ei=xmi–xi i=1,2,3,4,5,6 (53) 

 

Andcontrolfunctionis 

 
u= −KTV–K14 

 
where, 

 

 
(54) 

 
Fig.3.Thedynamicresponseof∆ωand∆δfor1%stepincreaseof∆Tm 
withnominalparameters 

 
equation(51),(52),(53),(54)and(55)wecanwrite, 

 

σ˙ = 58140e2+32501.5(e3+0.0001∆Tm)+ 
7256.25(e4  + 0.0023∆Tm) + 808.75(e5 − 
0.0066∆Tm)+45(e6−0.0941∆Tm)+1(–720xm1− 
1764xm2–1204xm3–665xm4–175xm5−21xm6+720r+ 
11021x1+6095x2+8923x3+1011x4+284x5+ 
22x6)–(−K1e1− K2e2− K3e3− K4e4− K5e5− K6e6− K7x1–
K8x2–K9x3–K10x4–K11x5–K12x6–K13r–K14) + 1.2674∆Tm 
Afterreductionwecanwrite, 

 
σσ˙ = (K1–720)σe1+(K2+56376)σe2+(K3+31297.5)σe3+ 
(K4+ 6591.25)σe4+ (K5+ 633.75)σe5+ (K6+ 24)e6+ (K7− 
10271)σx1+ (K8–4331)σx2+ (K9–7719)σx3+ (K10–
346)σx4+ (K11− 109)σx5+ (K12− 1)σx6+ (K13 + 
720)σr+(K14+11.6346∆Tm)σ (56) 

 
We will find the controller by satisfying condition σσ˙≤0. In 
addition, we can take term s instead of σto understand that this 
is related to switching hyperplane. Letting each term in 
bracket of above equation equating separately less than zero 
we can obtain the controller gains. 
Wegetthecontrollergainsas, 

K=0 ifse>0K=721ifse<0 

Fig.4.Thedynamicresponseof∆ωand∆δfor1%stepincreaseof∆Tm 

withnominalparameterswithdifferentfeedbackgains. 

 
 

Fig.5.Thedynamicresponseof∆ωand∆δfor1%stepincreaseof∆Tm 
withVariationsinparametersi.e.linereactancechange 

 
 

 
Theinitialconditionsformodelwerechosenas, 

 
xm1=xm2=xm3=xm4=xm5=xm6=0.8 (58) 

 
VII. SIMULATIONRESULTSANDDISCUSSIONS 

Figure3showsthesimulationresultsofdynamicresponse of 
∆ωand ∆δwhen the system is subject to 1% step 
changeof∆Tm.Resultsusingtheintegralcontrolleralone 

1 1 1 1 

K2=−56377 ifse2>0 K2=0 ifse2<0 
K3=−31298ifse3>0K3=0ifse3<0 
K4=−6592 ifse4>0 K4=0 ifse4<0 
K5=−634 ifse5>0 K5=0 ifse5<0 
K6=−25 ifse6>0 K6=0 ifse6<0 
K7=−10272ifsx1>0K7=0ifsx1<0 
K8=−4332 ifsx2>0 K8=0 ifsx2<0 
K9=−7720 ifsx3>0 K9=0 ifsx3<0 
K10=−347 ifsx4>0 K10=0 ifsx4<0 
K11=−110ifsx5>0K11=0ifsx5<0 
K12=−2ifsx6>0 K12=0 ifsx6<0 

K13=−721 ifsr>0 K13=0 ifsr<0 
K14=−12ifs>0K14=0ifs<0 

Theinitialconditionsforplantwerechosenas, 
 

x1=x2=x3=x4=x5=x6=0.1 (57) 

(withoutVSS)arealsoincludedforcomparisonpurposes and they 
clearly demonstrate the improvement in dynamic performance 
in the sense of maximum deviation in frequency, rise and 
settling time. It can be clearly seen that the responses obtained 
with VSPSS are well damped 

 
There is one major drawback associated with VSC, namely 
chattering. The control signal emerging from the control lawis 
seen to comprise high frequency components which leadsto 
control chattering is highly undesirable because it involves 
extremely high control activities and it may excite high 
frequencyun-modeleddynamics.[1]Howeverthisdrawback 
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Fig.6.ThemodelfollowingcontrolforPSSwithnominalparameters
xe=0.4(withoutinsertionoflowpassfilter) 

Fig.7.ThemodelfollowingcontrolforPSSwithnominalparameters
xe=0.4(withinsertionoflowpassfilter) 

 
 

 
canbeovercomebymaintainingslidingmotioninsidea small 
boundary layer neighbouring the switching line
of low pass filter ahead of the plant to yield asmooth control 
signal. The transfer function of low pass filter used is [9].
G(S)=0.1/(S+20) 

 

rametersi.e. 

 

Fig.7.ThemodelfollowingcontrolforPSSwithnominalparametersi.e. 

canbeovercomebymaintainingslidingmotioninsidea small 
boundary layer neighbouring the switching line or by insertion 
of low pass filter ahead of the plant to yield asmooth control 
signal. The transfer function of low pass filter used is [9]. 

 
 
 
 
 
 
 
 
 
 

 
Fig.8.ThemodelfollowingcontrolforPSSwith+50%variationsinallparameters (with 
insertion of low pass filter) 

 
Fig.9.ThemodelfollowingcontrolforPSSwith-50%variationsinallparameters (with 
insertion of low pass filter) 

Fig.8.ThemodelfollowingcontrolforPSSwith+50%variationsinallparameters (with 

 

50%variationsinallparameters (with 
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It is observed that the system remains insensitive to such 
parameter variations and the model following control is 
successively implemented. It is noticeable that the other 
methods of switching vector design can be implemented with 
little effort. 

 
VIII. CONCLUSION 

In this paper a design technique based on the concept of 
pole placement has been applied for the design of the variable 
structure power system stabilizers. Appropriate selection of 
switchingvectorisveryimportantforprovidinglargeimprove- 
mentinsystemperformanceandtheconceptofpoleplacement 
establishes a systematic procedure for the proper choice 
oftheswitchingvector.TheVSScontrollerexhibitsinsensitivity to 
such parameter variations and disturbances. The switching 
logicoftheVSScontrollerissimpleandseemsamenable for 
practical implementation. It is observed that the system 
remainsinsensitivetosuchparametervariationsandthemodel 
following control is shown to be effective for power system 
stabilizers. 
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