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Abstract — The long life and health monitoring of structure are 
most important for their lifespan optimization and preservation. 
WSN technology has proved to be a back boon for structural 
health monitoring in 21st century due to its easy of installation, 
minimal structural damage and low cost. This paper provides a 
review on the recent developments inthe area of SHM using WSs. 
Keywords: wireless sensor network; structural health 
monitoring; scheduling approach; energy efficiency 

I. INTRODUCTION 

Structural Health observance (SHM) is outlined 
becausethemethodofimplementingharmorbrokendetection and 
characterization strategy for applied science structures. This 
changes to the fabric, resistivity and/or geometric properties of 
a structural system, as well as changes to the boundary 
conditions and system property that badly have an effect on 
the system’s performance, is outlined as harm. In SHM 
method we tend to observe system mistreatment sporadically 
sampled dynamic (time varying) response 
measurementsfromassociatedegreearrayofsensors.Thenthe 
extraction of injury, damage-sensitive options from these 
measurements are taken out. To work out the present state of 
system health, the applied mathematics (mathematical) analysisof 
the options is performed. There’ll be inevitable aging and 
degradation and weakening within the structure ensuing from 
operationalatmosphere.LongrunSHMisoutlinedasoutputof 
thismethodthat'ssporadicallyupdatedrelatingtothepowerof 
thestructuretoperformitscalculatedperforms.Relatingtothe 
integrity of the structure, SHM is employed for speedy 
condition screening and it gives real time info, as an example 
just in case of maximum events like earthquakes or blast 
loading [1]. To estimate the state of structure health, SHM 
detects the changes in structure that affects its performance. 
Time-scale of amendment and severity of amendment are 2 
major factors. However quickly the amendment happens is 
time- scale of amendment, and degree of amendment is 
severity of amendment. SHM has 2 major categories: disaster 
response (earthquake, explosion, etc.) and continuous health 
observance (ambient vibration, etc.). SHM has 2 approaches: 
direct harm detection (visual scrutiny, and X- ray, etc.) and 
indirect harm detection (change in structural 
properties/behavior). A typical SHM system, in general, 
includes3majorcategories:adetectorsystem,information 
/knowledge/information}processsystem(includingdata 

acquisition, transmission, and storage), and health analysis 
system (including diagnostic algorithms and knowledge 
managements). 
WhySHM? 
WSNwithSHMgivesaneffectivetechnologyforsensingand 
telecommunication. Due to feature, the reliability and 
availability areguaranteed. WSN with SHM providesan early 
prediction of risks. WSNs serve as a best to provide a stable 
structureforSHMsystems[2].ThelimitationinWSNincludes 
usage of the sensor nodes, high amount of data and 
connectivity. The Existing system uses the centralized 
mechanism to determine the health status of the sensor nodes. 
But it is inappropriate to changing environment and enabling 
wireless technology. The proposed system provides a 
decentralized mechanism and an adoption of wireless 
technology. The backup sensors are used to avoid the failures 
that occur during the transmission. The objective of energy 
consumption and prolonged lifetime are achieved. 

Parameter Wired 
Sensor 
Networks 

Wireless 
Sensor 
Networks 

Cost Very  high, 
real world 
examples 
costing 
$10,000 to 
$25,000[3] 

Low, each 
sensor node 
costing 
approximately 
$200[3] 

Deployment 
Time 

Very long, 
one  real 
world 
example 
taking 
severaldays 
[4] 

Short, same 
real world 
example 
taking a half 
hour [4] 

Lifespan Long, 
typically 
limited by 
hardware 

Short, 
typically 
limited  by 
node battery 
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overall health. This method is one in every of the biggest 
WSN-based SHM systems to this point – with a complete of 
sixty-four detector nodes deployed on the bridge. Another 
WSN based SHM system has been recently deployed on the 
Zheng Dian Bridge in China [3]. The sensors during this 
network collect close acceleration knowledge and use the quick 
Fourier remodel (FFT) and also the resultant Power Spectral 
Density (PSD) to see the structure’s mode form. This paper 
presentsacomprehensivesurveyofthestateoftheartanalysis 
withintheapplicationofWSNstothesphereofSHM.Existing 
surveyslike[4],[10],and[8]haveprimarilycenteredontopics 
likedetectorhardware,nodehardware,networkprotocols,and 
software system, and potential applications. 
Summaries like [8] have provided a general summary of the 
challenges of WSNs for SHM however haven’t highlighted 
future analysis directions. Additionally, by presenting an 
outline of theoretical work, laboratory test bed-based 
experimental work, and real-structure experimental work, this 
paper provides a comprehensive description of existing 
challenges and future trends within the application of SHM to 
WSNs. Lastly; this paper focuses additional on the 
telecommunications part of WSNs for SHM than existing 
surveys. 

 

 
TABLE I COMPARISON OF WIRED AND WIRELESS 
SENSOR NETWORKS 

II. LITERATURESURVEY: 

InWSNsforSHMsensorsarebringintoeffectiveaction at 
varied locations throughout a structure. These sensors collect 
data regarding their close like acceleration, close vibration, 
load and stress at sampling frequencies upwards of one 
hundred rates [3]. Hence, the sensing and sampling rates and 
quantityofcollectedknowledgeareabundantontopofthosein 
different applications in WSNs; and as a result, WSNs for 
SHM introduce challenges in network style. Detector nodes 
transmit the perceived knowledge to the sink either directly or 
by forwarding every other’s packets. Knowledge aggregation 
and process is very important for the detection and precise 
localization of structural injury and might occur in different- 
different locations (e.g., nodes, cluster-heads, and/or central 
server) reckoning on the configuration. Typically, injury 
detection needs the comparison of the structure’s gift modal 
options to those related to the structure’s uninjured state. 
Modal options of structures are chiefly depicted by the mode 
shapes the natural vibration pattern for a given structure. 

SHM has been transportation into effective action in 
crucial structures like aerial vehicles, ships, high-rise buildings, 
dams,andbridges.Primarily,theseinstallationsarewired;but, 
associate increasing variety are mistreatment WSNs. one in 
every of the primary WSNs for SHM was put in on the sound 
Bridge in 2007 by a quest team at the University of Calif. in 
Berkeley [8]. Sensors during this network collect close 
vibrationsthat arethenroutedfromtheorigindetectornodeto a 
centralized base station. The bottom station then processes the 
informationandmakesacallregardingthestructure’s 

III. BLOCKDIG. SHMUSINGWSNS 

In general, SHM requires the installation of an outsized 
numberofsensorsthroughoutastructurecapableofcollecting 
sensed data. The collected data is processed such decisions 
aboutthestructure’soverallhealthareoftenmade.Thissection 
provides a comprehensive overview of the components and 
processes involved in SHM using WSN. This section begins 
with a summary of commonly sensed structural health 
parameters then an summary of the sort of sensors used. Next 
common damage detection algorithms used in damage 
detection systems are presented and discussed. The section 
concludes with summary of injury localization techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1:SHMusingWSNs 

A.SensorsandParameters 
One of the most important considerations when designing 

SHMsystemistheselectionofsensorsandsensedparameters. 
Factorslikesensor power consumption and sensedparameters 
influenceoverallnetworkdesignbyinfluencingrouting 

 lifespan lifespan 

Numberof 
Sensors 

Typically 
low due to 
sensor 
installation 
difficulty. 

Typically 
higherdueto 
easeofsensor 
installation 

Connection 
Bandwidth 

High 
bandwidth 
duetowired 
connection 

Limited 
bandwidth 
andunreliable 
connection 

DataRate Highsensor 
data rates 

Lower sensor 
data rates but 
higherthan 
conventional 
WSNs 

Sensor 
Synchronicity 

Very high 
duetowired 
connections. 

Concern due 
to wireless 
connection. 
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protocol selection, damage detection algorithm selection, 
damagelocalizationalgorithmselection,andnetworklifespan. 
1) SensorParameters: 
Parameters commonly detected, recorded and monitored in 
SHM systems can be broadly classified as the following types 
[13] 

• Load-Loadsaretheforcesappliedtothestructure.Possible 
loads are environmental loads such as wind speeds, and loads 
due to passing vehicles. Loads can be static or dynamic. 
Typically, the response of the structure to these loads can be 
measured by the SHM system. 
• Global Load Response – Global loads responses are the 
structure’s response to a given load that can be measured 
throughout the entire structure. Typically, measured parameters 
are a structure’s acceleration and velocity. 
• Local Load Response – Local load responses are the 
structure’s responseto a given load that can only be measured 
in a specific part of the structure 
• Environmental Factors – Environmental factors are external 
to thestructureitself and relateto thestructure’senvironment. 
Measured parameters include temperature, salinity, humidity, 
and atmospheric acidity. These parameters can be used in the 
estimation of environmental loads such as winds. 
In order to properly capture the response of a given structure, 
sensors got to be installed at various locations and data should 
be collected at an appropriate rate for a sufficient period of 
time. Thefrequenciesof dominant modes aretypically around 
10Hz;however,samplingfrequenciescanbechosenatvalues that 
are upwards of 100 Hz [24]. Higher sampling rates allow the 
inclusion of higher-frequency modes which can be used in 
damage detection and localization. The high sampling rate 
required for successful SHM significantly increases the amountof 
collected data and, consequently, the amount of data 
aggregated, processed and transmitted in the overall network. 

SENSORSFORSHM 
The sensing system in the SHM is formed by smart 
materials/sensors; Fiber optic sensors (FOS), piezoelectric 
sensors, magneto resistive sensors, and self - diagnosing fiber 
reinforcedstructuralcomposites.Thesensorsarecharacterized 
with very important capabilities of sensing various physical 
and chemical parameters related to the health of the structures 
such as vibrations and all other important factors 

 
FIBREOPTICSENSORS(FOSS) 
FOS may be classified by many ways. FOS may be classified 
supported the modulation of sunshine characteristics (intensity, 
wavelength,phase,orpolarizationetc.)bytheparameterstobe 
detected. It also can be classified by the tactic through that the 
sunshine within the sensing segments is changed within or 
outside the fiber (intrinsic or extrinsic). FOS also can be 
classified supported the sensing range; native (Fabry-Perot 
FOS or long-gauge FOS etc.), similar distributed (fiber full 
general grating) and distributed sensors (Brillouin-scattering- 
based distributed FOS). FOS square measure embedded in 
recentlymadecivilstructures,togetherwithbridges,buildings, 
and dams to yield data concerning strain (static and dynamic), 

temperature,defects(delamination,cracks, andcorrosion)and 
concentration of chloride ions. On existing structures, FOSs are 
typically surface mounted. The info collected by FOSs is 
employed to judge the protection of each the new-built 
structures and repaired structures, and diagnose. 

 
PIEZOELECTRICSENSORS: 
Piezoelectric materials exhibit synchronous actuator/sensor 
behavior supported electrical-mechanical deformation. There 
aremanyvarietiesofelectricitymaterials:electricityceramics, 
electricitypolymers, andelectricitycomposites.Supportedthe 
measure of electrical electrical resistance and elastic wave’s 
electricity sensors were fresh introduced into SHM of 
engineering science structures as a vigorous sensing 
technology. 

 
C.MAGNETOSTRICTIVESENSORS 
Ferromagnetic materials are the materials that are automatically 
ill-shapen once placed in robust field [7]. This development is 
thoughtbecausethemagnetostrictiveresult.Withintheinverse 
magnetostrictive result, the magnetic induction of the fabric 
changes once the fabric is automatically ill-shapen. supported 
thehigherthanphenomena,KwunandBartelsmade-up akind of 
magnetostrictive device (MsS) while not direct physical 
contact to the fabric surface that might generate and notice 
target-hunting waves within the magnetic force materials 
beneath testing. Khazem et al. additionally utilised MsS to 
examineclothingropesonthePresidentBridgeinbigapple.A pulse 
of ten kilocycles per second longitudinal target-hunting 
waveonthelengthoftheclothingdetectedthemirroredsignals 
from geometric options and defects within the clothing, a 
cement and degree of hurt [11]. 
Outoftheabovesensortypes,themost-commonlyusedare 
piezoelectric accelerometers due to their low cost and ease of 
use [30]. As a result, most damage detection and localization 
methods have been developed for these sensors. 
B. Damage Detection and Localization in WSNs for SHM, 
sensor nodes collect parameter data such as acceleration, strain, 
velocity, and displacement. This raw data must be processed 
suchthatfeaturessuchasthestructure’smodalparameterscan be 
extracted. These features are used by SHM based WSNs in 
bothdamagedetection andlocalization[23].Theremainderof this 
section discusses the commonly-used damage detection and 
localization techniques. 
Damage Detection Methods one of the primary goals in SHM 
is the detection of structural damage. Typically, damage 
detectionrequiresthecollectionofsensordatathatcanbeused to 
extract parameters related to the structure’s overall health. The 
most common parameters used in damage detection are modal 
parameters like the natural frequency and mode shape. 
Modalparameterestimationcanbeperformedinboththetime and 
frequency Domain [23]. Once modal parameters are extracted, 
damage detection algorithms are used to determine 
whetherdamagehasoccurred.Taxonomyofdamage-detection 
methods is Illustrated in Fig. 2. In time domain analysis, the 
time series data collected from a sensor node is directly 
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processed to extract modal parameters. Common techniques 
used are the two-stage least 
Squares method (alternatively known as the auto-regressive 
moving average (ARMA) model method), the Ibrahim time 
domain (ITD) method, the impulse response function (IRF) - 
driven method [23], and the covariance matrix method [24]. 
Onecommon advantageoftimedomaintechniquesisthatthey 
provide stable results, however they work for slightly damped 
systemssincetheyrequireasignificantnumberoftimedomain 
samplesto efficiently operateon highly damped systems[25]. 

 
IVTaxonomyofDamageDetectionMethods 

 

 
Fig.2TaxonomyofDamageDetectionMethods 

 
The ARMA model method uses statistical modelling 

torepresenttherelationshipbetweentheexcitationpatternand the 
structural response under undamaged and damaged states. 
Theresponseofthestructureatanyinstantoftimeispresented in 
terms a number of stored observations and a number of 
residual error terms [26]. There exist several variations of 
ARMA model based damage detection, one of which is based 
on the sum of the squares of the residuals [27]. In a different 
technique [28], [29] ARMA models are fitted to an excitation 
pattern through a two stage method. First, the AR model is 
producedandtheresidualsfromtheARmodelusedasaninput 
forthesecondstage.Next,dependingontheexcitationpattern, an 
AR or ARX model is fitted to the residuals. The two-stage 
method, unlike other ARMA methods, guarantees 
convergence.Theresultantmodelcanbeusedintheextraction of 
modal parameters such as the damping ratio, natural 
frequency, mode shape and damped natural frequency [28]. 
Typically, ARMA models are only applicable in systems with 
whitenoiseexcitationpatterns.Ifalternateexcitationpatterns 

areapplied,theresultantmodelisanautoregressiveexogenous 
(ARX) model. The same modal parameter extraction method 
can be used for ARX models. One drawback of the technique 
presented in [27] is that the data used to build the model was 
collected through forced excitation experiments. Hence, this 
technique may not be valid for structures subjected to other 
sources of excitation. Although ARMA model techniques can 
detect damage effectively, they fail to detect minor damages 
andthey requireinstallationof alarge number of sensors[30]. 
The ITD method uses the Inverse Fourier Transform (IFT) to 
attain the IRF from the given sensor data [23]. The IRF can 
then be used to estimate modal frequencies and then, using 
those frequencies, the remaining modal parameters such as 
modeshapeandnaturalfrequency.TheIRFarefirststackedto 
formtheHenkelmatrix,whichisthendecomposedintomodal 
observability matrix and modal controllability matrix, from 
which the modal parameters are obtained. Once the modal 
parameters are obtained, they are compared to those of 
undamaged structure to decide on the current state of the 
structure. One common IRF-driven algorithm is the Eigen 
system realization algorithm (ERA) [21], which was proposed 
in 1985, however, a recent modification of ITD method was 
proposed in [22] to address the main drawback of ITD related 
to deficiency in identifying closely spaced structure modal 
shapes and hence their modal parameters. The covariance- 
driven subspacedamagedetection techniques arebased on the 
fact that a state-space model can be used to represent a 
vibrating structure [10], [23]. The state space model 
representation of a vibrating structure comprises the 
definitionsofstatetransitionmatrix,inputmatrixandoutputmatrix.
Inthe first step of covariance-driven method is to estimate the 
covariance matrix of the collected time domain measurements 
aswell asthenext state-output covariance matrix. Usingthese 
two covariance matrices, the state transition matrix is 
estimated. In the second step, an eigenvalue decomposition 
operation is applied on the estimated state transition matrix. 
Using theresultant eigenvector matrix aswell astheinput and 
output matrices, the modal participation and mode shape 
matrices are estimated. In [24], the covariance matrix method 
of damage detection is used on the acceleration response 
covariance matrix. This method was shown to be more 
effective than traditional damage detection techniques such as 
the mode shape comparison method. On the other hand, one 
drawback of subspace based damage detection techniques is 
that they are affected by variations in unknown ambient 
excitations, which leads to a false alarm of damage detection 
[24]. Data-driven subspace identification techniques operate 
directly on the collected time-domain measurements rather 
thantheestimatedcovariancematrixasinthecovariancebased 
method presented above. This method was first presented by 
thepioneeringworkofOverscheeandDeMoorin[15].Inthis 
method, the covariance estimation process is replaced by a 
projection process between future and past outputs [16], [27]. 
In particular, the row space of the future outputs is projected 
into the row space of the past outputs. To perform this, a QR 
decomposition operation is applied. One main advantage of 
data-driven subspace method is that by avoiding estimation of 
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covariance matrix, squaring both error and noises is also 
avoided. However, the drawback of this method is that no 
information is available regarding the accuracy of the estimated 
modal parameters [28]. 
In frequency domain analysis, the collected statistic data is 
transformed from the time domain to the frequency domain 
through transforms like the Fast Fourier Transform (FFT) and 
therefore the Wavelet Transform (WT). Within the literature, 
frequency domain -based damage detection methods include 
the peak-picking (PP) method, the complex mode identification 
function method (CMIF), and therefore the rational fraction 
polynomial method (RFP) [23]. The advantage of frequency 
domain methods over the time domain methods is that less 
noise modes are obtained. However, the FFT operation has its 
own drawbacks, one among which is leakage. Although the 
effect of leakage is often reduced by using windowing 
functions, its effect can't be totally eliminated [25]. The PP 
methodofmodalparameterextraction isprobably 
theonlymodalparameterextractionmethod.TheFFTisappliedto 
collected sensor data and therefore the Eigen frequencies are 
identified at the peaks of the frequency response plot. The 
Eigen frequencies are utilized in the extraction of natural 
frequency, damping ratio and mode shape. This method, 
althoughsimple,isdifficulttouseincaseswherethefrequency 
response peaks are poorly defined andwhere the damping ratio 
isn't low [28]. The CMIF method, also referred to as the 
frequency domain decomposition (FDD) method, is an 
alternate modal parameter estimation method based off the PP 
method [29]. This method uses singular value decomposition 
(SVD) to decompose the output power spectrum into all the 
mode shapes for the given structure. Additionally, to attaining 
all relevant mode shapes this method also extracts all modal 
parametersforeverymodeshape.Thepeaksgeneratedthrough 
CMIF, which correspond to modal frequencies, are 
proportionaltotheamplitudeofthefrequencyresponse,which may 
be thought of as a plus since it provides the examiner to urge a 
sense for the strength and contribution of every mode. 
However, when a robust mode exists, it can dominate the 
output and consequently cause accessible peaks to disappear 
[27].The RFP method for modal parameter estimation which 
was first presented in [20], parameterizes the frequency 
response matrix as an RFP model [23]. Supported the RFP 
model, rectilinearregression isoften applied andtherefore the 
matrix coefficients estimated. Modal parameters can then 
beattainedfromthecalculatedcoefficients. Themost advantage 
of FRF damage detection method is its 
simplicityalsoasitsindependencyofacquiringmodalanalysis of 
mode shapes [20]. However, it's several drawbacks including 
deficiency in estimating severity of injury also as inability to 
detect small damages [20].Oncemodal parameters are derived 
for a given structure, it becomes 
possibletoassessthestructure’soverallhealth.Simpledamage 
detection methodsincludestatisticalanalysis, modefrequency 
comparisonandmodeshapecomparison.Instatisticalanalysis 
techniques, the ARMA model for the given structure is 
comparedtotheARMAmodelfortheundamagedstructure.If the 
difference betweenthe 2modelsis biggerthan aspecified 

tolerance the structure are often classified as damaged. Mode 
frequency and mode shape based damage detection methods 
compare the present modeand/or frequency shape thereto of 
the undamaged structure. Once more, if the error becomes 
sufficiently large, the structure is taken into account damaged. 
These techniques, although simple, have found extensive use in 
SHM. The Hilbert-Huang transform has found use in damage 
detection [24], [25], [25]. The proposed algorithm combines 
empiricalmodaldecomposition(EMD),therandomdecrement 
technique andthereforethe Hilbert-Huangtransform tospot the 
instant at which structuraldamageoccurs. thissystem are often 
applied in situations where structures experience significant 
noise and may detect both gradual and 
rapidchangesinstructuraldamage,however,itcannotseparate 
very close frequencies [25], [25]. In [20], Lamb-wave-based 
damage identification approaches for composite structures is 
presented.Theauthorsenhance thepower of thecontinual 
wavelet transform in feature extraction from 
vibrationsignals.Compositedamagemonitoringrisesbecause the 
top priority problem of SHM. Lamb wave method is 
extremely sensitive forlittle damages(crackor delamination). 
Additionally, Lamb wave is in a position to be propagated for 
an extended distance without significant amplitude attenuation 
in plate structures. However, the phenomenon of dispersion 
and sophisticated transition, are hard to be analyzed and 
interpreted. Lamb waveisunavoidably suffering from 
interferences and powerful noise. It requires more precise 
andadvancedsignalprocessing and has extractiontechniques 
tospot 
damageinformationoncestructuraldamagehasbeendetected,it'st
hennecessaryto 
workoutthedamage’slocation.Thisprocessisnameddamage 
localization, whichneeds theinstallationofenoughsensors such 
sufficient sensor coverage is provided to locate damage 
anywhere within the structure. Insufficient sensor coverage 
may result in damage detection without localization. 
Commonlyuseddamagelocalizationtechniquesarefrequency 
based [20], mode shape–based [20], flexibility matrix based 
[21], [22], stiffness matrix based [22], and support vector 
machinebased[24].Ataxonomyillustrating thevarious damage 
localization methods are often seen in Fig. 3. 

 
V.DamageLocalizationTaxonomy 

 
Fig.3DamageLocalizationTaxonomy 

The usage ofmodal parameters such as frequency and 
mode shape in damage localization is desirable due to the 
simplicityindeterminingthesemodalparameters.In[20]both 
frequencies based damage localization and mode-shape based 

Journal of Vibration Engineering(1004-4523) || Volume 24 Issue 1 2024 || www.jove.science

Page No: 5



 

 

damage localization algorithms are proposed. The proposed 
frequency based damage detection algorithm uses changes in 
measured mode shapes to localize damage and changes in 
measured natural frequencies to estimate damage severity. 
Similarly, a mode-shape based damage detection algorithm, 
that uses changes in modal strain energy to localize damage, 
was proposed. Experiments showed that the frequency-based 
method localized damage with a small error while the mode 
based method localized damage with almost no errors. Both 
algorithms could also estimate the severity of the damage. On 
the other hand, the drawbacks of frequency based damage 
localizationincludethatvariationssuchasinmassstructureor 
measurement temperature can lead to uncertainty in the 
estimated frequency [20], [15]. In addition, exploiting mode 
shapes for damage classification may be ineffective since 
damage is local and may not affect the shapes of lower modes 
[20], [26]. The flexibility approach for damage localization 
uses a structure’s flexibility matrix to localize structural 
damage. Damage localization typically requires the flexibility 
matrix from the undamaged structure and an estimate of the 
structure’s current flexibility matrix. In [21], the flexibility- 
difference method of injury detection is proposed. Damage is 
localized through computing the change in flexibility between 
the undamaged structure and therefore the current structure. 
This method reliably localizes a structure’s damage and, in 
cases of poor sensor coverage, will find the sensornode 
closesttothestructuraldamage.Asimilardamagelocalization 
strategy is employed in [22] with the difference matrix 
computed from the estimated flexibility matrix andundamaged 
flexibility matrix of the structure. The main disadvantage of 
this technique is the necessity of construct an 
accuratemodelfortheundamagedstructure[17].Thestiffness 
approach to damage localization uses a structure’s stiffness 
matrix.Thestiffnessmatrixandadaptabilitymatrixare often 
inverted from each other [17]. It is difficult to directly 
estimate the stiffness matrix and, consequently, most efforts 
have been in using statistical techniques to estimate the 
stiffness matrix. In [22], a stiffness matrix based damage 
localization method is employed duringwhich thedetection of 
thepresent stiffnessmatrixisviewedas an area optimization 
problem. Evolutionary algorithms are used to produce the 
stiffness matrix and the estimated stiffness 
matrixcomparedtothatoftheundamagedstructuretolocalize 
damage. This method was shown to be effective in scenarios 
where damage slowly spreads throughout the structure but 
would be ineffective in localizing damage in an already 
damaged structure. In [18], an approach for damage 
localization, using both a structure’s flexibility and stiffness 
matrices, is proposed. First, the modal parameters are 
identified and utilized in the estimation of a flexibility matrix. 
Thestiffnessmatrixisthenachievedthroughtheinversion of the 
pliability matrix. Both of estimated matrices, the 
undamagedflexibility, andtheundamagedstiffnessmatrixare 
used to localize structural damage. This method is more 
reliable due to the usage of both flexibility and stiffness 
matrices. This approach was shown to work well except in 
scenarios where sensor coverage is sparse. The application of 

support vector machines (SVM) is a relatively new 
phenomenon in SHM. In [14], SVMs are wont to classify 
structural damage patterns for SHM systems with a minimal 
number of sensors. Through theutilization of one sensor on the 
roof of a building and one sensor on rock bottom floor, 
damage was shown to be localizable to a specific floor in the 
building. Damage localization was shown in simulations to 
scale to buildings up to 21 stories height. These results show 
the promise of applying SVMs to damage localization as they 
minimize the number of installed sensors while having 
comparable damage. 

 
VI. Conclusion 

This paper presented a comprehensive review of 
WSN based SHM systems.Background information relating to 
structural health monitoring such as common sensors, 
commonly measured parameters and damage detection and 
localization algorithms were discussed. The main challengesof 
scalability, time synchronization, sensor placement 
optimizationanddataprocessingwerepresentedandsolutions to 
these problems discussed and compared.Experimental work 
performed in the lab and on real-world structures was 
presentedanddiscussed.Finally,futureresearchdirectionsfor 
SHM systems using WSNs were presented. 
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