

Journal of Vibration Engineering

ISSN:1004-4523

Registered

SCOPUS

DIGITAL OBJECT IDENTIFIER (DOI)

GOOGLE SCHOLAR

IMPACT FACTOR 6.1

Ig*-CLOSEDSETSINFUZZYIDEALTOPOLOGICALSPACES

AnitaSinghBanafarandAnilKumarDepartment ofAppliedMathematics
JabalpurEngineeringCollegeJabalpur(M.P.)–482011INDIADepartmentofMathematics
SchoolofPhysicalSciences
StrexUniversityGurugramHarayana–India

Abstract:

In this paper we introduce the notion of Ig*-closed sets, Ig*-open sets in fuzzy ideal topological space and studied some of its basic properties and characterizations.

Itshowsthis classlies between fuzzy closed sets and fuzzy g-closed sets.

KeywordsandPhrases: *Ig*-closedsets, Ig*-open.*

1. Introduction

After the introduction of fuzzy sets by Zadeh [18] in 1965 and fuzzy topologybyChang [2]in1968, severalresearches were conducted on the generalization of the notions of fuzzy setsandfuzzytopology. The hybridization of fuzzy topologyand fuzzy ideal theory was initiated by Mahmoud [6] and Sarkar [12] independentlyin 1997. They [6, 12] introduced the concept of fuzzyideal topological spaces as anextensionoffuzzytopologicalspaces and ideal topological spaces.

Anonemptycollectionoffuzzy sets I of a set X satisfying the conditions:

- (i) if $A \in I$ and $B \le A$, then $B \in I$ (heredity),
- (ii) if $A \in I$ and $B \in I$ then $AUB \in I$ (finite additivity)

is called a fuzzy ideal on X. The triplex (X, τ, I) denotes a fuzzy ideal topological space with a fuzzy ideal I and fuzzy topology τ [12].

The local function for a fuzzy set A of X with respect to τ and Idenoted by A^* (τ ,I) (briefly A^*) in a fuzzy ideal topological space (X, τ ,I) is the union of all fuzzy points x_β such that if U is a Q-neighbourhood of x_β and $E \in I$ then for at least one point $y \in X$ for which U(y) + A(y) - 1 > E(y) [12]. The *-closure operator of a fuzzy set A denoted by $Cl^*(A)$ in (X, τ ,I) defined as $Cl^*(A) = A$ UA*. In (X, τ , I) the collection τ^* (I) is an extension of fuzzy topological space than τ via fuzzy ideal which is constructed by considering the class $\beta = \{U - E : U \in \tau, E \in I\}$ as a base [6,12].

Recently the concepts of fuzzysemi-I-open sets [4], fuzzy α -I-open sets[16], fuzzy γ -I-open sets [3], fuzzy pre-I-open sets [8] and fuzzy δ -I-open sets [17]havebeen introduced and studied in fuzzy ideal topological spaces. In the present paper we introduce and study the concept of fuzzy I_g* -closed sets infuzzy ideal topological spaces which simultaneously generalizes the concept of I_g* -closed sets [11].

2. Preliminaries

LetXbeanonemptyset. A family τ of fuzzy sets of X is calleda fuzzy X if topology [2]on the null fuzzy Oandthewholefuzzyset1belongstotandtisclosedwithrespecttoanyunionandfiniteinters ection. If τ is a fuzzy topology on X, then the pair (X, τ) is called a fuzzy topologicalspace. Themembers ofτ are called fuzzy open sets of X and theircomplements are called fuzzy closed sets. The closure of a fuzzy set A of Xdenoted by Cl(A), is the intersection of all fuzzy closed sets which contains A. Theinterior [2] ofafuzzysetAof X denoted by Int(A) is the union of all fuzzysubsetscontainedin A. A fuzzy set A of a fuzzy topological space (X, τ) is calledfuzzysemi-

openifthereexistsafuzzyopensetUinXsuchthatU \leq A \leq Cl(U)[1].Afuzzy set A in (X, τ) is said to be quasi-coincident with a fuzzy setB, denoted by AqB, if there exists a point $x \in X$ such that A(x) + B(x) > 1[4]. A fuzzy set V in (X, τ) is called a Q-neighbourhood of a fuzzypoint x_{β} if there exists a fuzzy open set U of X such that x_{β} qU \leq V[4].

Definition 2.1: A fuzzy set A of a fuzzy topological space (X, τ) is called fuzzygeneralized closed written as fuzzy g-closed if $Cl(A) \le O$ whenever $A \le O$ and O isfuzzyopen[14].

Definition 2.2: A fuzzy set A of fuzzy ideal topological space (X, τ, I) is said to befuzzy*-closed(resp.fuzzy*-denseinitself)ifA* \leq A(resp.A \leq A*)[12].

Definition 2.3: Afuzzy set A of a fuzzy ideal topological space (X, τ, I) is called fuzzy I_g -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy open in X[13].

Lemma2.1: $A \le B \Leftrightarrow (Aq(1-B))$, for every pair of fuzzy sets A and BofX[9].

3. FuzzyIg*-closedsets

Definition 3.1: A fuzzy set A of a fuzzy ideal topological space (X, τ, I) is called fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and U is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and $A \le U$ is fuzzy Ig^* -closed if $A^* \le U$, whenever $A \le U$ and $A \le U$ is fuzzy Ig^* -closed if $A^* \le U$, where $A \le U$ is fuzzy Ig^* -closed if $A^* \le U$, where $A \le U$ is fuzzy Ig^* -closed if $A^* \le U$.

Remark 3.1: Every fuzzy *-closed set of a fuzzy ideal topological space (X, τ , I)isfuzzyIg*-closedandeveryfuzzyIg*-closedisfuzzyIg-closedsetbuttheconversemaynotbetrue.

Remark 3.2: In a fuzzy ideal topological space (X,τ,I) , I is fuzzy Ig^* -closed forevery $A \in I$.

Theorem 3.1: Let (X,τ, I) be a fuzzy ideal topological space. Then A^* is fuzzy Ig^* -closed for every fuzzy set A of X.

Proof: LetAbea fuzzysetof XandUbeanyfuzzyg-opensetofXsuchthat $A^* \le U$. Since $(A^*)^* \le A^*$ it follows that $(A^*)^* \le U$. Hence A^* is fuzzy Ig^* -closed. **Theorem3.2:** Let(X, τ ,I)beafuzzyidealtopologicalspaceandAbeafuzzy Ig^* -closedandfuzzyg-opensetinX. Then Aisfuzzy*-closed.

Proof: Since A is fuzzy g-open and fuzzy Ig^* -closed and $A \le A$. It follows that $A^* \le A$ because A is fuzzy Ig^* -closed. Hence $Cl^*(A) = AUA^* \le A$ and A is fuzzy *-closed.

Theorem3.3:Let(X,τ,I)beafuzzyidealtopologicalspaceandAbeafuzzysetof X. Thenthefollowingareequivalent:

- (i) AisfuzzyIg*-closed.
- (ii) Cl*(A)≤UwheneverA*≤UandUisfuzzyg-openinX.
- (iii) $\rceil (AqF) \Longrightarrow \rceil (Cl^*(A)qF)$ for every fuzzy closed set F of X.
- (iv) $(AqF) \Rightarrow (A^*qF)$ for every fuzzy closed set F of X.

Proof: (i) \Rightarrow (ii). Let A be a fuzzy Ig*-closed set in X. Let $A^* \le U$ where U is fuzzyg-open set in X. Then $A^* \le U$. Hence $Cl^*(A) = AUA^* \le U$. Which implies that $Cl^*(A) \le U$.

(ii) \Rightarrow (i). Let A be a fuzzy set of X. Byhypothesis $Cl^*(A) \leq U$. Which implies that $A^* \leq U$. Hence Aisfuzzy Ig*-closed.

(ii)
$$\Rightarrow$$
 (iii).LetFbeafuzzyclosedsetofXand \((AqF).Then1-FisfuzzyopeninXandbyLem ma2.1,A \leq 1-F.Therefore,Cl*(A) \leq 1-F,becauseAisfuzzyIg*-closed.HencebyLemma2.1,\((Cl*(A)qF).

- (iii) \Rightarrow (ii).LetUbeafuzzyIg*-opensetofXsuchthatA* \leq U.ThenbyLemma2.1, \exists (Aq(1-U)) and 1-U is fuzzy closed in X. Therefore by hypothesis \exists (Cl*(A)q(1-U)).Hence,Cl*(A) \leq U.
- (i) \Rightarrow (iv).LetFbeafuzzyg-closedsetinXsuchthat (AqF).ThenA \leq 1-Fwhere1-Fisfuzzyg-open.Therefore by(i)A $^*\leq$ 1-F.Hence (A * qF).
- $$\label{eq:continuous} \begin{split} \text{(iv)} &\Longrightarrow \text{(i).LetUbeafuzzyclosedsetinXsuchthatA} \leq \text{U.ThenbyLemma2.1,} \\ & \boxed{\text{(Aq(1-U))}} \\ \text{and1-UisfuzzyclosedinX.Thereforebyhypothesis} \boxed{\text{(A}^*\text{q(1-U)).HenceA}^*} \leq \text{UandAisfuzzyI} \\ \text{g*-closedsetinX.} \end{split}$$

Theorem3.4:Let(X,τ ,I)beafuzzyidealtopologicalspaceandAbeafuzzyIg*-closedset.ThenxqCl*(A) \Longrightarrow Cl(x)qAforanyfuzzypointxofX.

Proof:LetxqCl*(A). If $\lceil (Cl(x)qA)$. ThenbyLemma2.1,A \leq (1-Cl(x)). And sobyTheorem3.3(ii),Cl*(A) \leq (1-Cl(x))because(1-Cl(x))isfuzzyg-opensetin X.WhichimpliesthatCl*(A) \leq (1-x).HencebyTheorem3.3(ii), $\lceil (xqCl^*(A))$,whichisacontra diction.

Theorem3.5:Let(X, τ , I) beafuzzyidealtopologicalspaceandAbefuzzy *-denseinitselffuzzyIg*-closedsetofX.ThenAisfuzzyg-closed.

Proof: Let U be a fuzzy open set of X such that $A \le U$. Since A is fuzzy Ig^* -closed,byTheorem3.3(ii), $Cl^*(A) \le U$.Therefore, $Cl(A) \le U$,becauseAisfuzzy*-denseinitself.HenceAisfuzzyg-closed.

 $\label{thm:composition} \textbf{Theorem3.6:} Let(X,\tau,I) be a fuzzy ideal topological space where I=\{0\} and Abea fuzzy set of X. Then Aisfuzzy Ig*-closed if and only if Aisfuzzy g-closed.$

 $\label{lem:proof:since} \begin{tabular}{ll} $\textbf{Proof:}SinceI=\{0\},$A^*=Cl(A)$ for each subset $AofX$. Now the result can be easily proved. \\ \begin{tabular}{ll} $\textbf{Theorem 3.7:} Let(X,\tau,I)$ be a fuzzy ideal topological space and A, Bare fuzzy Ig*-closed. \\ \begin{tabular}{ll} $\textbf{Closed.} \\ \textbf{Closed.} \\ \begin{tabular}{ll} $\textbf{Closed.} \\ \textbf{Closed.} \\ \begin{tabular}{ll} $\textbf{Closed.} \\ \textbf{Closed.} \\ \textbf{Closed.} \\ \begin{tabular}{ll} $\textbf{Closed.} \\ \textbf{Closed.} \\$

Proof:LetUbeafuzzyg-opensetofXsuchthatAUB≤U.ThenA≤UandB≤U

.ThereforeA*≤UandB*≤UbecauseAandBarefuzzyIg*-

closedsetsofX.Hence(AUB)*≤UandAUBisfuzzyIg*-closed.

Remark3.3:The intersection of two fuzzy Ig^* -closed setsin afuzzyidealtopologicalspace(X,τ,I)maynotbefuzzy Ig^* -closed.

Example3.1:LetX={a,b}and A,Bbetwo fuzzysets defined as follows:

A(a)=0.9 , A(b)=0.7 B(a)=0.8 , B(b)=0.7U(a)=0.3 , U(b)=0.4

Let $\tau = \{0, U, 1\}$ and $I = \{0\}$. Then A and B are fuzzyIg*-closedsetsin(X, τ , I) butA \cap BisnotfuzzyIg*-closed.

Theorem 3.8: Let (X,τ,I) be a fuzzy ideal topological space and A, B are fuzzysetsofXsuchthatA \leq B \leq Cl*(A).IfAisfuzzyIg*-closedsetinX,thenBisfuzzyIg*-closed.

Proof: Let U be a fuzzy g-open set such that $B \le U$.Since $A \le B$ we have $A \le U$.Hence, $Cl^*(A) \le U$ because A is fuzzy Ig^* -closed.Now $B \le Cl^*(A)$ implies that $Cl^*(B) \le Cl^*(A) \le U$.ConsequentlyBisfuzzy Ig^* -closed.

Theorem 3.9: Let (X,τ,I) be a fuzzy ideal topological space and A, B are fuzzysetsofXsuchthatA \leq B \leq A*. Then A and Bare fuzzyg-closed.

Proof: Obvious.

Theorem 3.10: Let(X, τ ,I)be a fuzzy ideal topological space. If A and B arefuzzy subsets of X such that $A \leq B \leq A^*$ and A is fuzzy Ig*-closed. ThenA*=B*andBisfuzzy*-openinitself.

Proof: Obvious.

Theorem 3.11: Let(X, τ ,I) be a fuzzy ideal topological space and \mathcal{F} be the family of all fuzzy *- closed sets of X. Then $\tau \subset \mathcal{F}$ if and only if every fuzzy set of X is fuzzy Ig*-closed.

Proof:Necessity.Let $\tau \subset \mathcal{F}$ and U be a fuzzy g-open set in X such that $A^* \leq U$. Now $U \in \tau \Longrightarrow U \in \mathcal{F}$. And so $Cl^*(A) \leq Cl^*(U) = U$ and A is fuzzy Ig^* -closed set in X.

Sufficiency.Suppose that every fuzzy set of X is fuzzy Ig*-closed.LetU $\in \tau$.SinceUisfuzzyIg*-closed and $U \leq U$, $Cl^*(U) \leq U$. Hence $Cl^*(U) = U$ and $U \in \mathcal{F}$. Therefore $\tau \subset \mathcal{F}$.

Definition 3.2: A fuzzy set A of a fuzzy ideal topological space (X,τ,I) is calledfuzzy Ig^* -openifitscomplementI-Aisfuzzy Ig^* -closed.

Remark 3.4: Every fuzzy *-open set in a fuzzy ideal topological space (X,τ, I) is fuzzy I_g -open and every fuzzy I_g -open is fuzzy I_g -open. But the converse maynotbetrue.

Theorem3.12:Let(X,τ,I)beafuzzyidealtopologicalspaceandAisfuzzysetof X. Then A is fuzzy Ig^* -open if and only if $F \leq Int^*(A)$ whenever F is fuzzy g-closedand $F \leq A$.

Proof:Necessity.LetAbefuzzyIg*-openandFisfuzzyg-closedsetsuchthatF \leq A. Then 1-A is fuzzy Ig*-closed, 1-A \leq 1-F and 1-F is fuzzy g-open in X. HenceCl*(1-A) \leq (1-F).WhichimpliesthatF \leq Int*(A).

Sufficiency.LetU be afuzzyg-opensetsuch that $1-A \le U$. Then 1-U is fuzzyg-closed set of X such that $1-U \le A$. And so by hypothesis, $1-U \le Int^*(A)$. Which implies that $Cl^*(1-A) \le U$ and 1-A is fuzzy Ig^* -closed. Hence A is fuzzy Ig^* -open.

Corollary3.1:Let(X,τ ,I)beafuzzyideal topologicalspaceandAisfuzzysetof X. ThenAisfuzzyIg*-openifandonlyifF \leq Int*(A)wheneverFisfuzzyclosedandF \leq A.

Theorem3.13:Let(X, τ ,I)beafuzzyidealtopologicalspaceandAbeafuzzysetofX.IfAisfu zzyIg*-open and Int*(A) \leq B \leq A,then B is fuzzy Ig*-open.**Proof:**LetAbefuzzyIg*-openinXthen1-AisfuzzyIg*-closed.HenceCl*(1-A) \leq (1-A)isfuzzyg-openset.AlsoInt*(A) \leq Int*(B) \Rightarrow Cl*(1-B) \leq Cl*(1-A).Hence,B is fuzzy Ig*-open.

References

- 1. AzadK.K., Onfuzzysemicontinuity, fuzzyalmostcontinuity and weakly continuity, J.Math. Anal. Appl. 82 (1981), 14-32.
- **2.** Chang C.L., Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968),182-189.
- 3. Gupta M.K. and Rajneesh, Fuzzy γ -I-open sets and a new decomposition of fuzzy semi-I-continuity via fuzzy ideals, Int. J. Math. Anal. 3(28)(2009), 1349-1357.

- **4. Hatir E.**and **Jafari S.**, Fuzzy semi-I-open sets and fuzzy semi-I-continuityviafuzzyidealization, Chaos Solitons and Fractals 34(2007), 1220-1224.
- **5. HayashiE.**, Topologies defined by local properties, Math. Ann. 156(1964), 205-215.
- **6. MahmoudR. A.**, Fuzzy ideal, fuzzy local functions and fuzzytopology, J. fuzzy Math. 5(1)(1997), 165-172.
- 7. Naseef A. A. and Mahmoud R. A., Some topological applicationsviafuzzyideals, Chaos Solitons and Fractals 13 (2002), 825-831.
- **8.** NaseefA.A.andHatirE.,Onfuzzypre-IopensetsandadecompositionoffuzzyIcontinuity,ChaosSolitonsandFractals40(3)(2007),1185-1189.
- **9. Pu. P. M.** and **Liu Y. M.**, Fuzzy topology I Neighbourhood structure ofafuzzypointandMoore-Smithconvergence,J.Math.Anal.Appl.76(1980),571-599.
- **10. Pu. P. M.**and **Liu Y. M.**, Fuzzy topology II, product and quotientspaces, J. Math. Anal. Appl. 77(1980), 20-37.
- 11. Ravi O., Paranjothi M., Murugesan S. and Meharin M., g*-closedsets in ideal topological spaces, South Asian Journal of Mathematics4(6)(2014),252-264.
- **12. Sarkar D.**, Fuzzyideal theory, fuzzy local function and generatedfuzzytopology, Fuzzysets and systems, 87(1997), 117-123.
- **13. Thakur S. S. and Banafar A. S.**, Generalized closed sets in fuzzy idealtopologicalspaces, J. Fuzzy Math. 21(4)(2013), 803-808.
- **14. Thakur S. S.** and **Malviya R.**, Generalized closed sets in fuzzy topology, Math. Note 38 (1995), 137-140.
- **15. Vaidyanathaswamy R.**, The localization theory in set topology.Proc.IndianAcad.Sci.,(20)(1945),51-61.
- 16. Yuksel S., G.Caylak E. And Acikgoz A., On fuzzy α -I-open continuous and fuzzy α -I-open functions, Chaos Solitons and Fractals 41(4) (2009),1691-1696.
- 17. Yuksel S., G.Caylak E. And Acikgoz A., On fuzzy δ-I-open sets anddecompositionoffuzzyα-I-continuity,SDUjournalofScience(E-Journal)5(1)(2010),147-153.

18. ZadehL.A., Fuzzysets, Information Control(8)(1965), 338-353.