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Abstract: The design and performance of terrestrial microwave and millimeter-wave links for 5G 

and beyond depend strongly on the variability of the effective Earth radius factor, , which 

compactly represents the combined effects of atmospheric refraction and Earth curvature. Coastal 

regions, in particular, often deviate substantially from the standard  assumption because of 

strong temperature and humidity gradients that give rise to sub-refraction, super-refraction and 

ducting. This paper presents an eight-year (2016–2023) climatology and data-driven model of the k-

factor at 65 m over Port Elizabeth, South Africa, using hourly meteorological data derived from 

reanalysis-based profiles. First, full-range statistics, probability density functions, cumulative 

distributions and regime frequencies are used to characterize the occurrence of standard, sub-

refractive, super-refractive and ducting conditions. The distribution is found to be strongly heavy-

tailed, with a small fraction of hours exhibiting extreme  values that are physically meaningful but 

numerically ill-conditioned for regression. Based on physical and design considerations, a 

modelling design range of  is adopted, retaining over 88% of the data and 

corresponding to standard and moderate anomalous refraction. The overall mean refractivity 

gradient at 65 m is about –57 N-units , corresponding to an annual mean , 

indicative of predominantly super-refractive conditions. Seasonally, summer (DJF) exhibits the 

largest mean  (≈1.8) due to enhanced low-level moisture and stronger refractivity stratification, 

while winter (JJA) shows the lowest mean (≈0.4), consistent with drier, more stable boundary-layer 

conditions and more frequent strong-gradient events. Spring and autumn yield intermediate means 

(≈1.2–1.5), reflecting transitional thermal and moisture structures. Within this range, detailed 

diurnal, monthly and seasonal analyses show that Port Elizabeth is predominantly super-refractive, 

with enhanced anomalies around sunrise and during late autumn to winter. A Random Forest 

regression model driven by near-surface (10 m) and 65-m thermodynamic predictors achieves 

, RMSE ≈ 0.21 and MAPE ≈ 6.8% on an independent test set. Feature-importance 

analysis reveals that vertical gradients of water-vapour pressure, relative humidity and potential 

temperature between the surface and 65 m are the dominant controls on  variability. The resulting 

model provides a practical tool for locally consistent k-factor estimation in Port Elizabeth, while the 

rare, extreme ducting regimes are reserved for subsequent classification-based analyses and explicit 

fade-margin studies at sub-millimeter wave and microwave frequencies. 

Keywords: Effective Earth-Radius factor, Refractivity Gradient, Tropospheric Propagation, Surface 

Ducting, Super-refraction, Terrestrial Microwave Link, Random Forest, 5G/6G Backhaul. 

 

1. INTRODUCTION 

Design and performance analysis of terrestrial microwave and millimetre-wave links for 5G 

and next generation 6G communication networks, depend critically on the state of the lower 
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troposphere, particularly the behaviour of the radio refractive index and its vertical gradient 

near the Earth’s surface [1]-[3]. The effective Earth-radius factor, , is a key radio-

meteorological parameter used in ITU-R P.530 to represent the combined influence of 

atmospheric refraction and Earth curvature on line-of-sight propagation [4]. It provides a 

convenient way to account for ray bending by replacing the true Earth with a fictitious 

sphere of radius , where  is the physical Earth radius. Under standard atmospheric 

conditions, the near-surface refractivity gradient is about -40 N-units , giving the 

widely used effective Earth-radius factor of . However, coastal and tropical regions 

often exhibit pronounced departures from this standard state due to strong temperature and 

humidity gradients, leading to sub-refraction, super-refraction or ducting and, consequently, 

large variability in  [5]-[7]. In practical terms, low-  (sub-refractive) conditions shorten 

the radio horizon and increase diffraction loss, whereas high-  or ducting regimes extend 

the horizon, enhance over-the-horizon interference and can produce deep, multipath-

induced fades on terrestrial links [1] & [8]. Accurate characterization of the effective Earth-

radius factor is therefore essential for determining radio horizon distances, predicting 

diffraction fading, and specifying fade margins for high-capacity terrestrial backhaul and 

access links. 

A substantial body of work has examined refractivity, refractivity gradients and related 

propagation parameters over different climatic zones. In West Africa, Adediji et al. (2011) 

analyzed the distribution of refractivity gradient and k-factor over Akure, reporting strong 

seasonal modulation associated with the West African monsoon [7]. Suleman et al. (2025) 

and Sheu et al. (2022) extended such analyses to other Nigerian locations, showing that 

coastal and humid stations experience more frequent super-refractive and ducting 

conditions and, hence, larger variability in effective Earth radius [9] & [10]. In Nigeria, 

Lawal and Omotoso (2023) used ERA5 reanalysis to estimate point refractivity gradient 

and geoclimatic factor at 70 m in Yenagoa, demonstrating that the coastal radio-climate is 

dominated by super-refraction and ducting events that significantly increase predicted fade 

depths [11]. 

Similar and more recent efforts have focused on mapping the k-factor over South Africa 

and other climatically diverse regions. For Southern Africa, Afullo and Odedina (2006) 

investigated k-factor distributions and diffraction fading, highlighting how non-standard 

refraction can substantially alter predicted fade margins over long terrestrial paths [12]. 

Nyete and Afullo (2013) modelled and mapped the seasonal distribution of effective Earth-

radius factor across the country [13], while Odedina and Afullo (2007) applied spatial 

interpolation techniques to estimate geoclimatic factor and fade depth over Southern Africa 

[14]. Palmer and Baker (2004, 2021) used ground-based observations to predict both 

monthly cumulative distributions and long-term averages of the effective Earth-radius 

factor over South Africa, providing valuable large-scale design curves but without 

explicitly resolving diurnal and low-level thermodynamic controls on  [15] & [16]. More 

recently, Lawal et al. (2025) performed statistical estimation of point refractivity gradient 

and geoclimatic factor at microwave antenna height in Port Elizabeth, showing that the 

local coastal environment is strongly super-refractive and duct-prone at low levels [17]. 

Outside Africa, several studies have examined atmospheric ducts and refractive regimes in 

other coastal and maritime climates: Mentes and Kaymaz (2007) investigated surface duct 

conditions over Istanbul [18]; Zhou et al. (2022) analyzed the spatio-temporal distribution 

of lower atmospheric ducts over seas adjacent to China [19]; Jiang et al. (2022) studied 

mesoscale variability of surface ducts during Santa Ana wind episodes [20]; and 

Gunashékar (2006) reviewed trans-horizon propagation caused by evaporation ducts [1]. 

Advanced retrieval techniques, such as refractivity-from-clutter methods, have also been 

used to infer refractivity structure and ducting from marine radar echoes [2]. Collectively, 

these works confirm that coastal and maritime environments exhibit complex, highly 
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variable k-factor and ducting climatologies with strong implications for link design and 

interference management. 

This study aims to highlight the importance of detailed radio climatological characterisation 

for both Earth–space and terrestrial links, and to underscore the need to extend similar, 

high-resolution analyses to effective Earth-radius factor in climatically sensitive coastal 

zones. Despite the contributions above, there is still limited work that: (i) quantifies the full 

diurnal, monthly and seasonal variability of  at microwave-antenna height over a South 

African coastal city using long-term, hourly data; and (ii) links this variability to physically 

interpretable, low-level thermodynamic predictors through modern machine-learning 

approaches. Therefore, several key radio-climate variables will be used to perform a 

machine learning based modeling of the k-factor over South Africa and assess its impact on 

South African satellite-link. 

2. Uniqueness of the Present Study 

Despite these advances, several gaps remain in the study of the effect of the k-factor over 

Earth–space and terrestrial links. First, most existing k-factor studies over Southern Africa 

have relied on radiosonde data with coarse temporal resolution and limited spatial coverage, 

which may not adequately capture coastal processes such as sea-breeze circulations, marine 

boundary-layer inversions and coastal upwelling. Second, the majority of works are purely 

statistical and do not leverage modern machine-learning techniques to model the non-linear 

relationships between meteorological variables, refractivity gradient and effective Earth 

radius. Machine-learning methods such as Random Forests (RF) have been successfully 

applied in atmospheric sciences for forecasting visibility, ducting conditions and other 

propagation-relevant parameters because they can handle complex interactions, non-

linearities and mixed-scale predictors. However, their application to the direct prediction of 

effective Earth-radius factor or refractivity-gradient regimes for terrestrial microwave 

design remains largely unexplored, particularly in coastal South African environments. 

This study addresses these gaps by developing a Random-Forest-based framework for 

modelling the effective Earth-radius factor using refractivity gradient at 65 m over Port 

Elizabeth (Gqeberha), a major coastal city on the south-eastern coast of South Africa. The 

location is characterized by a temperate maritime climate, persistent sea-breeze systems and 

frequent low-level inversions, making it a natural laboratory for investigating abnormal 

refraction and k-factor variability. The present research is unique because it: (i) focuses on 

a South African coastal city that has received limited attention compared to other coastal 

cities, (ii) explicitly applies refractivity gradient at an operational antenna height (65 m) to 

determine its corresponding effective earth radius factor, and (iii) integrates machine 

learning to provide predictive capability and feature-importance diagnostics for a range of 

k-factor that spans from standard to moderately anomalous conditions. The resulting k-

factor climatology and predictive models are expected to support more reliable inter-

terrestrial link design, refined fade-margin specifications and improved radio-climate 

characterization for current and future terrestrial microwave networks in South Africa. 

3. Methodology and Computational Analysis 

3.1 Research Location and Data Source 

This study focuses on Port Elizabeth (Gqeberha), a coastal city on the south-eastern 

shoreline of South Africa at latitude and longitude of approximately 33.96°S, and 25.60°E 

respectively. It is situated along Algoa Bay in the Eastern Cape Province. The region 

experiences a temperate maritime climate with pronounced sea-breeze circulations, 

frequent low-level inversions and sharp humidity gradients, conditions that strongly 
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modulate near-surface radio refractivity and abnormal refraction events [17] & [21]. Port 

Elizabeth is a quad-season location with four distinct seasons which are summer 

(December, January and February), autumn (March, April and May), winter (June, July and 

August) and spring (September, October and November) [22]. These features make Port 

Elizabeth an ideal natural test site for effective Earth-radius factor ( ) studies relevant to 

coastal terrestrial links. Eight years hourly meteorological data covering 2016–2023 were 

obtained from the fifth-generation European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis (ERA5). ERA5 provides globally consistent fields of surface (10 m) 

and pressure-level parameters on a 0.25° × 0.25° grid, including temperature, pressure, 

dew-point temperature, relative humidity and wind components [23]. The grid cell whose 

centre is closest to Port Elizabeth was extracted, and hourly data at the surface (10 m), 1000 

hPa and 975 hPa were retained. These levels were selected to span the lowest 100 m above 

ground, allowing robust interpolation of meteorological variables to a nominal microwave 

antenna height of 65 m, in line with earlier refractivity-gradient and k-factor studies. 

3.2 Computation of Effective Earth Radius Factor 

Hourly surface refractivity  and refractivity at 65 m were computed from air pressure  

(hPa), temperature  (K) and water-vapour pressure  (hPa) using equation (1) [6]: 

       (1) 

where  was obtained from ERA5 dew-point temperature or relative humidity via a 

standard saturation vapour formulation. The hypsometric equation and hydrostatic balance 

were used to relate pressure levels to geometric height, and meteorological variables were 

vertically interpolated between the surface (10 m), 1000 hPa and 975 hPa to obtain 

temperature, pressure, humidity and refractivity at 65 m above ground level. The point 

near-surface refractivity gradient in the lowest 65 m, , was then approximated by a 

finite difference,  given by [6]: 

       (2) 

where  and  denote refractivity at the surface (10 m) and 65 m, respectively, and  

and  denote altitude at the surface (10 m) and 65 m, respectively. Under the assumption 

of a spherically stratified atmosphere with small gradients, the effective Earth-radius factor 

 was obtained from the linearized relation used in ITU and related literature [6]: 

      (3) 

Equation (3) can be simply written as: 

        (4) 

Equation (4) links the near-surface refractivity gradient  to the curvature of radio 

rays relative to the physical Earth radius. Hourly values of  at 65 m were then used to 

construct diurnal, monthly, seasonal and annual statistics and to derive the 1-percentile 

“worst-case” values required for radio-climate analysis and machine-learning modelling. 

3.3 Relationship between k-factor and Atmospheric Refraction Regimes 

Atmospheric refraction regimes can be expressed either in terms of the vertical refractivity 

gradient  or equivalently via the effective Earth radius factor . The approximate 
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relationship is given in equation (4), with  in N-units/km. Under standard refraction, 

 and , which is widely used in ITU-R propagation models [6] 

& [24]. Sub-refraction corresponds to weakly negative or positive gradients (e.g. 

), giving , while super-refraction arises for more negative 

gradients (e.g. ), leading to and an effectively larger Earth 

radius. For very strong negative gradients ( ),  can become very 

large or even negative, indicating ducting, where radio rays are trapped or strongly bent 

towards the surface. Climatological studies over African and coastal sites [7], [11], [25] & 

[26] confirm that transitions between sub-refraction, standard, super-refraction and ducting 

can therefore be compactly described in terms of characteristic -factor ranges (typically 

: sub-refraction/ducting; : standard to weakly anomalous; : 

strong super-refraction), providing a convenient framework for classifying refractive 

conditions in radio-link design. 

3.4 Variables for k-Factor Modelling 

The linear correlation and Random Forest model were driven by physically motivated 

predictors that describe (i) near-surface meteorology, (ii) conditions at 65 m, (iii) vertical 

thermodynamic gradients between the surface and 65 m, (iv) water-vapour pressure and 

associated gradients, (v) potential temperature and static stability, and (vi) diurnal and 

annual time harmonics. Table 1 shows the summary of all predictor variables used for 

Random Forest k-factor modelling. All variables were either collected or computed from 

the hourly ERA5-derived and station-based fields over Port Elizabeth, South Africa. 

Surface meteorology includes air temperature, dewpoint temperature, relative humidity, 

surface pressure and wind speed. Dewpoint depression (°C) is defined as: 

         (5) 

where  is surface air temperature and  is surface dewpoint temperature. 

At 65 m, analogous variables (air temperature, relative humidity and pressure) were derived 

from the interpolated profiles used to compute the refractivity gradient and k-factor. 

Vertical gradients were represented by simple level differences (65 m – surface) in 

temperature, relative humidity, pressure, potential temperature and water-vapour pressure. 

These differences capture the low-level thermal and moisture stratification that directly 

controls the refractivity gradient and hence the effective Earth radius factor. 

Water-vapour pressure at each level (in hPa) was obtained from temperature and relative 

humidity as [6]: 

         (6) 

with saturation vapour pressure given by: 

       (7) 

where  is air temperature in °C. 

Potential temperature (K) at each level was computed by [27]: 

        (8) 
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where  is absolute temperature,  is pressure (hPa),  hPa,  is the gas 

constant for dry air and  is the specific heat at constant pressure. The difference 

 serves as a low-level static-stability indicator: positive values 

indicate stable stratification, while negative values indicate convective or super-adiabatic 

conditions. 

Finally, diurnal and annual cycles were encoded using sinusoidal time harmonics given as: 

    (9) 

             (10) 

which provide smooth representations of daily and seasonal variability without introducing 

discontinuities at 23:00 or 31 December. 

Table 1. Summary of predictor variables used for Random Forest k-factor modelling 

Category Variable name 

(used in text/plots) 

Description Units 

Surface meteorology (0 m) 

Air Temperature 

(Surface) 

Screen-level dry-bulb air 

temperature 

°C 

Dewpoint 

Temperature 

(Surface) 

Screen-level dewpoint 

temperature 

°C 

Dewpoint Depression ; measure of surface 

moisture deficit 

°C 

Relative Humidity 

(Surface) 

Screen-level relative humidity % 

Pressure (Surface) Surface atmospheric pressure hPa 

Wind Speed 

(Surface) 

Horizontal wind speed at screen 

level 

m  

Meteorology at 65 m 

Air Temperature (65 

m) 

Air temperature at 65 m 

(absolute) 

K 

Relative Humidity 

(65 m) 

Relative humidity at 65 m % 

Pressure (65 m) Pressure at 65 m hPa 

Vertical thermodynamic 

differences (65 m – surface) 

Δ Temperature (65–

10 m) 

Temperature difference between 

65 m and surface 

K 

Δ Relative Humidity 

(65–10 m) 

Relative-humidity difference 

between 65 m and surface 

% 

Δ Pressure (65–10 

m) 

Pressure difference between 65 

m and surface 

hPa 

Water-vapour pressure & 

gradients 

Water Vapour 

Pressure (Surface) 

Water-vapour pressure 

computed from surface , RH 

hPa 

Water Vapour 

Pressure (65 m) 

Water-vapour pressure at 65 m hPa 

Δ Water Vapour 

Pressure (65–10 m) 

Vapour-pressure difference 

between 65 m and surface 

hPa 

Potential temperature & 

static stability 

Potential 

Temperature 

(Surface) 

Surface potential temperature  K 

Potential 

Temperature (65 m) 

Potential temperature at 65 m 

 

K 

Δ Potential 

Temperature (65–10 

m) 

Stability indicator  K 
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Time harmonics 

Hour (sin) ; diurnal phase – 

Hour (cos) ; diurnal phase – 

Day of Year (sin) ; seasonal 

phase 

– 

Day of Year (cos) ; seasonal 

phase 

– 

Season (Summer: 

DJF) 

Season (Autumn: 

MAM) 

Season (Winter: JJA) 

Season (Spring: 

SON) 

Four seasonal indices across one 

year-cycle 
– 

 

3.5 Application of Random Forest Algorithm 

Random Forest (RF) is an ensemble of  decision trees , each trained on a 

bootstrap sample with random feature subsets. The RF algorithm regression equation for 

prediction is given as [28] & [29]: 

        (11) 

where  is the predicted output (i.e. k) for input  (as indicated in Table 1) which is the 

input feature vector,  is the total number of trees in the forest, and  is the prediction 

of the -th decision tree for input . Each tree minimizes node impurity (e.g., variance) 

when splitting. 

The relationship between meteorological conditions and effective Earth-radius factor was 

modelled using RF regression algorithm. The target variable was the hourly  value at 65 

m, while predictors included interpolated temperature, pressure, relative humidity and 

water-vapour pressure at surface and 65 m, and temporal descriptors such as hour of day, 

day of year and season. The full 2016–2023 data set was divided into training (75%) and 

testing (25%) subsets using a time-aware split to preserve temporal dependence. Model 

hyperparameters (number of trees, maximum depth, minimum samples per split and leaf) 

were tuned via grid search using k-fold cross-validation on the training set. Performance 

was evaluated on the test set using the coefficient of determination ( ), root-mean-square 

error (RMSE) and mean absolute error (MAE). 

Random Forest was chosen as the sole machine-learning model for three main reasons. 

First, RF can capture strongly non-linear and interactive relationships between predictors 

and  without requiring explicit functional assumptions, which is advantageous for 

complex coastal boundary-layer processes [30] & [31]. Second, RF is relatively robust to 

multicollinearity and non-Gaussian predictor distributions, and it handles large feature sets 

with minimal pre-processing, making it well suited to multi-level meteorological inputs 

[32] & [33]. Third, RF offers built-in measures of variable importance (e.g., permutation 

importance), which are valuable for physically interpreting which atmospheric variables 

most strongly influence the effective Earth radius factor, complementing earlier statistical 

analyses of refractivity gradient and geoclimatic factor [34] & [35]. Given these 

advantages, and to maintain methodological focus and interpretability, alternative 

algorithms (e.g., support vector regression, gradient boosting, and deep neural networks) 

were not pursued in this initial study but may be considered in future comparative work. 
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4. Results and Discussion 

4.1 Overall Statistics of Effective Earth Radius Factor 

Table 2 summarizes the bulk statistics of the refractivity gradient at 65 m and the 

corresponding effective Earth-radius factor, , for Port Elizabeth over 2016–2023. The 

mean refractivity gradient is , with a median of . This 

is substantially more negative than the “standard atmosphere’’ gradient of about 

, which corresponds to . The result indicates that, on average, the 

lower troposphere over Port Elizabeth is more strongly super-refractive than the ITU-R 

standard atmosphere, consistent with the coastal, maritime character of the site where cool, 

moist marine layers and strong temperature–humidity gradients are frequently observed. 

Similar tendencies towards more negative gradients and enhanced anomalous propagation 

have been reported for other tropical and subtropical coastal locations in Africa [11]. 

The refractivity-gradient distribution is moderately left-skewed (skewness = –1.09) and 

leptokurtic (kurtosis ≈ 4.56), indicating a heavier left tail than a Gaussian distribution. 

Physically, this means that episodes of very strong negative gradients (potentially 

associated with surface-based or elevated ducts) occur more often than would be expected 

under purely “normal’’ conditions. These more negative gradients translate, through the 

standard relation given in equations (3) and (4) into larger deviations of the -factor from 

its nominal value. 

In contrast, the raw statistics of the -factor in Table 2 reveal an extremely heavy-tailed 

distribution. While the median  is 1.43, close to the classical standard value of about 1.33 

– 1.5 reported in several climatological studies [7], [26] & [36], the mean is only 1.22 

because it is pulled down by very large-magnitude negative outliers. The minimum and 

maximum values ( , ) are far outside the range 

normally used in link-design handbooks and ITU-R recommendations [4]. This behaviour 

is reflected in the extreme skewness (–121) and kurtosis (~2.3×10⁴), implying that a very 

small number of hours correspond to “critical’’ gradients for which the denominator in the 

-factor expression approaches zero and the resulting  becomes very large in magnitude. 

Similar extreme-value behaviour has been noted in other k-factor climatologies based on 

point refractivity gradients [7] & [36]. 

Table 2: Overall descriptive statistics of refractivity gradient and k-factor for Port Elizbeth 

at 65 m across 2016 to 2023 

Variable dN/dZ at 65 m 
(N-units/km) 

k-factor 

Count 70124 70124 

Mean -57.465 1.217 

Std 46.931 72.36 

Min -435.394 -14279.0 

25% -75.623 1.234 

50% -49.977 1.429 

75% -32.803 1.812 

Max 276.939 4108.01 

Skewness -1.0854 -121.294 

Kurtosis 4.5585 23333.74 
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The full-range probability density function in Figure 1 clearly illustrates this heavy-tailed 

structure. On the log-scaled ordinate, most hours cluster tightly around modest positive -

values near unity, while a few isolated bins appear far out on the negative and positive axes. 

These rare events correspond to strongly ducting or highly super-refractive situations where 

the ray curvature far exceeds or falls well below the Earth’s curvature. Under such 

conditions, EM waves can be trapped in surface or elevated ducts, producing over-the-

horizon propagation and severe departures from standard link-budget predictions. 

 
Figure 1: Full-range PDF of the Effective Earth Radius factor (k-factor) for Port Elizabeth 

over the years 2016 to 2023. 

Table 3 and Figure 2 provide a complementary regime-based view by classifying each hour 

into ducting, sub-refraction, standard refraction, and super-refraction based on its -factor. 

The analysis shows that ducting conditions occur in about 3.9% of hours, whereas super-

refraction is the most frequent regime, accounting for almost half (≈49.4%) of the 

observations. Standard refraction is realized in about 25.6% of hours, and sub-refraction in 

roughly 21.0% of hours. This regime distribution confirms that Port Elizabeth is dominated 

by non-standard refractive conditions, with a marked bias towards super-refractive and 

ducting episodes. Such behaviour is typical of coastal and marine environments where 

strong low-level humidity and temperature inversions are common, especially under 

anticyclonic conditions or when cool marine air undercuts warmer continental air. 

Table 3: k-factor refraction-regime frequency for Port Elizabeth over the entire period 

Regime Count 
(Hours) 

Percentage of 
Occurrence (%) 

Ducting 2719 3.88 

Sub-refraction 14759 21.05 

Standard 17977 25.64 

Super-refraction 34669 49.44 
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From a propagation perspective, sustained super-refraction and occasional ducting are 

particularly important for terrestrial microwave links. Super-refractive layers bend radio 

waves more strongly towards the Earth, effectively increasing the apparent Earth radius 

(large positive ), extending radio-horizon distances, and potentially increasing interference 

between neighbouring cells or co-channel systems. Ducting (negative ) can trap energy 

within a narrow vertical layer, enabling over-the-horizon propagation but also causing deep 

fades and multipath effects when the duct intersects the link path. At the other extreme, 

sub-refractive conditions (very low ) bend rays away from the Earth, effectively reducing 

the radio horizon and enhancing diffraction fading; ITU-R P.530 explicitly links such low-

 episodes to increased clearance losses and fade depths on terrestrial microwave paths [4]. 

 
Figure 2: Histogram chart of the frequency of refraction regimes based on k-factor for Port 

Elizabeth over the years 2016 to 2023. 

4.2 Design range selection for k-factor Prediction 

The combination of Tables 2 to 3 and Figures 1 to 2 therefore provides the physical 

rationale for the modelling approach adopted in this study. The full-range -factor 

distribution is dominated by a small fraction of extreme ducting and near-critical events 

which yield physically meaningful but numerically ill-conditioned  values. When these 

extremes are included in regression modelling, they act as high-leverage outliers that 

severely degrade the performance of Random Forest and other supervised-learning models. 

At the same time, Figures 1 and 2 show that the bulk of operationally relevant propagation, 

that is, standard to moderately anomalous refraction, occurs for  values clustered around 

order-unity magnitudes. 

Figures 3 and 4 zoom into the central portion of the -factor distribution (–80 ≤ ≤ 80) and 

superimpose the proposed design bounds at  and . In Figure 3, the 

probability density function reveals a sharply peaked core centred slightly above , 

with rapidly decaying tails. The dashed vertical lines at  and  clearly 

bracket the high-density region where most hourly observations lie. Outside this interval 
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the PDF collapses towards zero, indicating that very low or very high -values occur only 

rarely. The corresponding cumulative distribution in Figure 4 confirms this behaviour: the 

CDF rises very steeply between  and , indicating that the vast majority of 

hours are within this range, while the lower and upper tails contribute only a small fraction 

of the total probability mass. 

 
Figure 3: Probability Density Function plot showing k-factor (–80 ≤ ≤ 80) at 65 m with 

design range 0.3 to 3.0. 

 
Figure 4: Cumulative Distribution Function plot showing k-factor (–80 ≤ ≤ 80) at 65 m 

with design range 0.3 to 3.0. 
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Table 4 and Figure 5 quantify this behaviour in terms of simple regime frequencies. Only 

about 3.9% of the hours exhibit , which correspond to very strong sub-refraction 

and ducting conditions; around 7.9% of the hours have , associated with 

pronounced super-refraction and highly extended radio horizons. In contrast, approximately 

88.2% of all hours fall within . Thus, the proposed design window retains 

almost nine out of every ten observations, while excluding only a small minority of extreme 

cases that are responsible for the pathological tails in the full-range statistics. 

Table 4: Frequency of k-factor regimes relative to the selected design range at 65 m for Port 

Elizabeth (2016–2023). 

Refraction Regime Count 
(Hours) 

Percentage 
(%) 

k < 0.3 2719 3.88 
  61840 88.19 

k > 3.0 5565 7.94 

 

Figure 5: Frequency of the k-factor regimes within the selected design range of 0.3 to 3.0 at 

65 m. 

From a physical standpoint, the lower bound  removes the most severe sub-

refractive and ducting episodes in which rays are strongly bent away from, or trapped near, 

the surface and the apparent Earth curvature become unrealistically large in magnitude. The 

upper bound  excludes hours with very strong super-refraction, where the effective 

Earth radius is several times the geometric radius and the radio horizon is pushed far 

beyond normal design expectations. These rare regimes are crucial for interference and 

over-the-horizon studies, but they are not representative of the typical operating conditions 

that dominate the long-term performance of a 5G inter-terrestrial link. 

Statistically, restricting the regression to  therefore achieves two objectives. 

First, it focuses the Random Forest model on the dense, well-sampled region of the 

distribution where the relationship between surface and 65-m meteorology and  is most 

stable and where accurate prediction is most beneficial for routine link engineering. 

Second, it prevents a small set of extreme points from dominating the loss function and 

feature-importance metrics, leading to more robust and interpretable models. The rarer, 

more extreme -factor events (  or ) are explicitly not discarded from the 

climatological analysis; instead, they are reserved for a follow-up classification-based study 
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in which their occurrence, physical drivers, and fade-margin implications can be treated 

using methods tailored to highly non-Gaussian, regime-switching behaviour. 

Following the practice in previous k-factor climatologies and ITU-R line-of-sight design 

methods, which typically focus on moderate ranges such as –3 for reliability and 

clearance calculations, this study therefore concentrates the regression analysis on a design 

range of . This range retains the vast majority of hourly samples (over 88% 

of the dataset) and encompasses standard and moderate anomalous conditions that are most 

relevant for routine terrestrial radio link design in Port Elizabeth. 

4.3. Diurnal Variations of Effective Earth Radius Factor 

Figure 6 presents the overall diurnal cycle of the mean effective Earth radius factor, , at 65 

m for the full 2016 to 2023 period. The mean -factor remains predominantly super-

refractive (i.e. ) for most hours of the day, with mean values typically between about 

1 and 2, consistent with the coastal–maritime setting of Port Elizabeth where moist marine 

air and shallow inversions frequently enhance refractivity gradients. The most pronounced 

departures from this background occur around local sunrise (≈06:00 to 08:00), when the 

mean curve exhibits a sharp negative excursion followed by a strong positive spike. These 

features are produced by a small number of early-morning ducting events with very 

negative refractivity gradients (low or even negative ) followed by rapidly strengthening 

super-refraction as the nocturnal boundary layer begins to erode. Similar sunrise “transition 

signatures’’, with enhanced occurrence of ducts and strong super-refraction in the first 

hours after sunrise, have been reported in other tropical and subtropical sites [37], [38] & 

[39]. Although such extremes are rare in an absolute sense, they strongly distort the hourly 

mean, which is why the regression modelling later in the study is restricted to the more 

stable design range . 

 
Figure 6: Overall diurnal variations of the mean Effective Earth Radius k-factor at 65 m for 

Port Elizabeth across the entire period under study. 
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The seasonal breakdown in Figure 7 highlights how this diurnal behaviour is modulated by 

synoptic-scale forcing. In all seasons, nighttime and early-morning hours (00:00–06:00) are 

generally more super-refractive than the afternoon, reflecting the formation of stable, moist 

layers close to the surface under radiative cooling. Winter months (JJA) show the most 

dramatic anomalies: at around 07:00 the mean -factor plunges to strongly negative values, 

indicating frequent strong ducting during the morning transition under clear, high-pressure 

conditions typical of South African coastal winters. Autumn season (MAM) exhibits a 

contrasting peak with very large positive mean  near 08:00, suggesting occasional intense 

super-refraction when cool marine air undercuts warmer continental air during sea-breeze 

onset. Spring season (SON) is comparatively benign, with a smoother diurnal cycle and 

mean -values remaining mostly between 1 and 2, indicative of weaker inversions and 

stronger daytime mixing. In general, summer months (DJF) relatively display a stable 

diurnal cycle. Overall, these seasonal patterns are consistent with previous studies showing 

that coastal stations tend to experience stronger and more frequent anomalous refractive 

conditions in the cool, dry season than in the warm, convective season [11]. 

While Figures 6 and 7 are based on the full -factor range and therefore reflect the 

influence of extremes on the mean, Figure 8 focuses explicitly on the design interval 

 through seasonal cumulative probability distribution curves (CPDCs). All 

four curves lie within a relatively narrow band, confirming that the central portion of the -

distribution is broadly similar across seasons and dominated by moderately super-refractive 

conditions. The 50-percent (median) -values lie near 1.4–1.6 in all seasons, comparable to 

the 1.4–1.6 range reported for other coastal and low-latitude sites [7] & [38]. The lower 

decile of the distribution (≈10% of time) typically falls between  and 1.2, while the 

upper decile (≈90% of time) is around –2.2, indicating that, within the design range, 

the atmosphere dwells most of the time in mildly to strongly super-refractive states rather 

than near the standard  value. 

 
Figure 7: Diurnal variations of the mean k-factor by season for Port Elizabeth. 
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Figure 8: Seasonal Cumulative Probability Distribution Curve of diurnal Variations of k-

factor at 65 m over the design range 0.3 to 3.0, for Port Elizabeth across the entire period 

under study. 

In general, Figures 6 to 8 show that: (i) Port Elizabeth exhibits a pronounced diurnal cycle 

in , with the most anomalous conditions occurring around sunrise; (ii) winter and, to a 

lesser extent, autumn are the seasons most prone to extreme ducting and intense super-

refraction; and (iii) when attention is restricted to , the effective Earth radius 

factor remains within a relatively well-behaved super-refractive band in all seasons. These 

results reinforce the choice of the 0.3 to 3.0 design range for Random Forest modelling in 

this study. It captures the dominant diurnal and seasonal modulation of  that controls 

routine link performance, while leaving the rarer, more severe ducting regimes, most 

prominent in winter sunrise hours, for a dedicated classification-based analysis in 

subsequent work. 

4.4 Monthly and Seasonal Variations of Effective Earth Radius Factor 

4.4.1 Monthly Variations of Effective Earth Radius Factor 

Table 5 and Figures 9 to 11 summarize the monthly behaviour of the -factor at 65 m over 

Port Elizabeth for 2016–2023 using the full data range. The monthly means shown in Table 

5 and Figure 10 generally lie between about 0.2 and 2.6, indicating that, on average, the 

troposphere is super-refractive all year, in agreement with the overall statistics discussed 

earlier. However, the very large standard deviations and extreme values in Table 5 reveal 

that each month contains a mixture of benign and highly anomalous refractive conditions. 

The heatmap in Figure 9 makes this contrast especially clear. The row corresponding to the 

mean shows that March, November and December have the largest monthly mean -values 

(≈2–2.6), while May and July exhibit much lower means (0.2 and –0.92, respectively). 

Physically, the summer to autumn months (DJF–MAM) are characterized by warmer, more 

humid boundary layers and frequent sea-breeze intrusions, which tend to increase near-

surface refractivity and favour super-refraction. By contrast, late autumn and winter (May–

July) are dominated by cooler and often drier continental air masses with stronger nocturnal 

inversions; these can generate both strong ducts and sub-refractive conditions, resulting in 
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lower or even negative monthly mean -values despite the predominance of super-

refractive hours. 

The rows for standard deviation, skewness and kurtosis in Figure 9 and Table 5 highlight 

how strongly the monthly distributions are influenced by a small number of extremes. The 

month of July, for example, has a standard deviation of 197, a minimum of about –1.43×10⁴ 

and a maximum exceeding 3.3×10³, with strongly negative skewness (–63) and very large 

kurtosis (~4.6×10³). Similar but less intense behaviour is seen in March, May, August and 

September. These statistics indicate that most July hours fall within a relatively narrow, 

mildly super-refractive band, but a few hours with very large-magnitude -values dominate 

the higher moments. Such rare events correspond to near-critical refractivity gradients in 

which the denominator of the standard -factor formula becomes very small, yielding 

extremely high positive or negative . This pattern is consistent with previous k-factor 

climatologies in coastal and tropical environments, where extreme ducting or super-

refractive layers are infrequent but have a disproportionate statistical impact. 

Table 5: Overall monthly descriptive statistics of k-factor for Port Elizabeth across the 

years 2016 to 2023 

Month Count Mean Std Min 25% 50% 75% Max Skewness Kurtosis 

Jan 5948 1.92 7.28 -75.37 1.28 1.43 1.80 460.21 45.41 2718.00 

Feb 5424 1.88 33.06 -1104.07 1.30 1.48 1.89 2033.07 36.13 2875.38 

Mar 5952 2.57 58.00 -1421.53 1.27 1.47 1.87 4108.01 57.52 4284.96 

Apr 5760 0.92 31.68 -1781.89 1.17 1.41 1.84 606.95 -33.54 1874.76 

May 5952 0.20 110.61 -7024.73 1.14 1.43 1.93 2738.86 -44.63 2918.70 

Jun 5760 1.33 25.45 -1106.31 1.19 1.43 1.89 696.18 -16.62 901.30 

Jul 5952 -0.92 197.13 -14278.9 1.18 1.43 1.84 3366.12 -62.98 4645.95 

Aug 5952 0.75 47.50 -2740.04 1.21 1.39 1.73 1297.47 -38.66 2319.43 

Sep 5760 1.18 42.09 -3125.00 1.21 1.38 1.69 342.38 -70.98 5288.55 

Oct 5952 1.26 20.42 -1264.36 1.23 1.42 1.80 174.31 -46.66 2664.34 

Nov 5760 1.97 11.96 -125.09 1.26 1.42 1.73 557.98 36.03 1519.18 

Dec 5952 1.63 7.27 -234.03 1.29 1.44 1.80 321.87 1.36 1057.18 

 

 
Figure 9: Monthly statistics heatmap of k-factor at 65 m for Port Elizabeth over the full 

range of data across 2016 to 2023. 

Figure 10 shows the monthly mean -factor as a bar chart and mirrors the heatmap’s first 

row. The highest mean values occur in March and November–December, suggesting that 

late summer and early summer are the periods when effective Earth radius is largest, and 
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radio horizons are most extended on average. The lowest means occur in May to July, 

implying that 5G terrestrial links may be more vulnerable to sub-refractive fades and rapid 

changes in path clearance during late autumn and mid-winter. 

Figure 11 presents the monthly CPDCs on a logarithmic probability axis for the full -

factor range. For all months, the CDFs rise steeply near modest positive -values, 

indicating that the bulk of each monthly distribution is concentrated in a narrow band 

around –2. However, several months, particularly May, July and September, show 

small but distinct probability “tails’’ extending to very large negative or positive . On the 

log scale, these tails correspond to probabilities well below 1% but with large magnitudes 

on the abscissa. This confirms that extreme ducting and super-refraction are 

climatologically rare but present in most months, and that their inclusion in regression 

modelling would introduce strong non-Gaussian behaviour and numerical instability. 

Similar heavy-tailed monthly CPDCs have been reported in other subtropical coastal 

locations. 

 
Figure 10: Monthly variation of k-factor at 65 m for Port Elizabeth over the full range of 

data across 2016 to 2023. 

 
Figure 11: Monthly Cumulative Probability Distribution Curve of k-factor at 65 m for Port 

Elizabeth over the full range of data across 2016 to 2023. 
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Overall, the monthly analysis reinforces two key conclusions. First, Port Elizabeth exhibits 

super-refractive conditions in all months, with late summer and early summer being the 

most favourable for extended radio horizons. Second, extreme -factor events occur in 

many months but with very low frequency, which justifies treating them separately (via 

classification modelling) while focusing regression on the more densely populated design 

range  in this work. 

4.4.2 Seasonal and Annual trends of Effective Earth Radius Factor 

Figure 12 summarizes the seasonal variation of the mean -factor using the full range of 

data. The seasonal means are all greater than unity, confirming that Port Elizabeth is super-

refractive on average in every season. Summer (DJF) has the highest mean (~1.8), 

followed by spring (SON, ~1.5) and autumn (MAM, ~1.2), while winter (JJA) exhibits the 

lowest seasonal mean (~0.37). This seasonal ordering is consistent with the monthly 

statistics, where during summer and spring, enhanced low-level moisture and frequent 

marine inversions over the Indian Ocean promote super-refractive gradients, increasing the 

effective Earth radius. In winter, the prevalence of high-pressure systems, clear skies and 

strong nocturnal cooling over land favours both ducting and sub-refractive conditions, 

which reduce the seasonal mean despite the frequent occurrence of super-refraction at night 

and around sunrise. 

 
Figure 12: Seasonal Variation of k-factor at 65 m for Port Elizabeth over the full range of 

data across 2016 to 2023. 

The annual trend in Figure 13 shows that the mean -factor varies from year to year but 

remains generally super-refractive. After a slightly negative mean in 2016, the annual 

average rises to about 1.5–1.7 in 2017–2019, dips again in 2020, and then returns to values 

above 1.6 in 2021–2023. This interannual variability likely reflects a combination of 

changes in large-scale circulation patterns (e.g., El Niño–Southern Oscillation phase, 

regional pressure anomalies) and local mesoscale processes (e.g., sea-breeze characteristics, 

frequency of coastal inversions) that modulate the frequency and intensity of anomalous 

refractive conditions [18], [19] & [20]. Although a detailed attribution is beyond the scope 

of this study, the absence of any long-term downward trend suggests that super-refractive 

conditions, and thus extended radio horizons and potential interference paths, are a 

persistent feature of the local climate over the study period. 
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Figure 13: Annual trend of k-factor at 65 m for Port Elizabeth over the full range of data 

across 2016 to 2023. 

From an engineering standpoint, the seasonal and annual statistics in Figures 12 and 13 

emphasize that link-design margins for 30-GHz terrestrial systems in Port Elizabeth cannot 

be based solely on a fixed “standard’’  value. Instead, link budgets and clearance 

analyses should account for the strong seasonal modulation of , with particular attention to 

winter and late autumn, when the mean  is lowest and the probability of extreme ducting 

or sub-refraction is highest. ITU-R P.530 [4] and related studies on k-factor and refractivity 

gradients similarly recommend using locally derived statistics rather than a single global 

standard when assessing path clearance and fade risk. In summary, the monthly, seasonal 

and annual analyses demonstrate that Port Elizabeth is a super-refractive coastal site with 

pronounced temporal structure: strong super-refraction in summer and spring, reduced 

mean  and enhanced extremes in winter, and modest interannual variability. These 

features buttress the design-range selection adopted for the Random Forest modelling in 

this study. 

4.5 Linear Correlation of k-factor to the atmospheric input variables 

Figure 14 shows the Pearson correlation matrix between the k-factor (within the design 

range ) and all atmospheric input variables defined in the methodology 

(surface and 65-m temperature, dewpoint temperature, relative humidity, pressure, wind 

speed, their vertical differences, water-vapour pressure and potential temperature, together 

with diurnal and annual harmonics and seasonal indicators). 

Overall, the linear correlations between  and any single predictor are weak to at most 

moderate, with the largest absolute coefficients associated with vertical gradients in 

humidity, water-vapour pressure and potential temperature between the surface and 65 m, 

while single-level quantities (e.g. surface temperature or pressure alone) show only small 

correlations with . This is physically consistent with the dependence of refractivity 

gradient on vertical moisture and temperature structure rather than on absolute values at one 

level. The relatively modest linear coefficients also confirm that no single variable can 

explain the observed k-factor variability, thereby justifying the use of multivariate, non-
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linear Random Forest modelling in the next subsection rather than relying on simple linear 

regression with one or two predictors. 

 

Figure 14: Linear correlation matrix of k-factor against the input variables under the design 

range 0.3 to 3.0. 

4.6 Random Forest Prediction and Modeling of Effective Earth Radius Factor 

Table 6 summarizes the performance of the Random Forest (RF) regression model applied 

to the design range  using the physically based predictors described in the 

methodology. The model attains a coefficient of determination  on the 

independent test set, with RMSE ≈ 0.21 and MAE ≈ 0.12 in k-units, corresponding to a 

mean absolute percentage error of about 6.8%. The cross-validation statistics (mean CV 

 with a small standard deviation ≈0.04) indicate that the model skill is stable 

across different time folds and not the result of overfitting. 

Table 6: Performance metric analysis of the Random Forest prediction of k-factor within 

the design range  at 65 m 

Metric Value 

 

0.7661 
RMSE 0.2120 
MAE 0.1155 

MAPE 6.8317 
CV of mean  0.750309 
CV of mean  0.041907 

The scatter plot in Figure 15 further illustrates the model’s skill. Most test points cluster 

tightly around the 1:1 line, especially in the core range , showing that the RF 
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successfully captures the bulk of k-factor variability driven by low-level moisture and 

temperature structure. There is some widening of the scatter at the highest and lowest k-

values within the design range, with a tendency to slightly underestimate the largest peaks 

and overestimate the smallest troughs, which is typical of ensemble tree models in the 

presence of skewed target distributions. Nevertheless, the residual spread remains modest in 

absolute terms, confirming that the design-range restriction has effectively removed the 

most problematic extremes while preserving physically meaningful variability for 

regression. 

 
Figure 15: Random Forest regression plot of the observed vs RF-predicted k-factor within 

the design range  at 65 m for Port Elizabeth, over the test dataset (2022-

2023). 

The time-series comparison for December 2023 in Figure 16 provides a more intuitive view 

of model behaviour on operational time scales. The RF-predicted k-factor closely tracks the 

observed hourly fluctuations throughout the month, reproducing both gradual multi-day 

changes and rapid intra-day oscillations associated with diurnal heating, sea-breeze 

passages and frontal activity. Peaks and dips in the observed series are generally well 

captured, with only minor smoothing of the sharpest transitions. This indicates that, given 

only surface and 65 m meteorological data, the RF model can reliably anticipate day-to-day 

and hour-to-hour variations in effective Earth radius factor within the standard–moderate 

anomaly regime. 
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Figure 16: Time series prediction plot of observed vs RF-predicted k-factor within the 

design range  at 65 m for Port Elizabeth, over December 2023. 

In summary, the RF results show that: (i) physically motivated low-level predictors are 

sufficient to explain roughly three-quarters of the variance of  in the design range; (ii) the 

model generalizes well in time; and (iii) the remaining errors are likely attributable to 

unresolved vertical structure above 65 m, mesoscale dynamics and measurement noise. 

These limitations motivate the more advanced classification and higher-altitude feature 

augmentation proposed for the companion papers, but they do not detract from the 

usefulness of the present RF model as a practical tool for k-factor estimation and link-

design studies over Port Elizabeth. 

4.2. Feature Importance of Input Variables 

Table 7 and Figure 17 show that the Random Forest model is primarily controlled by 

vertical moisture and humidity structure between the surface and 65 m. The most influential 

predictors are: 

• Change in Water Vapour Pressure (65–0 m) with importance ≈ 0.32 and 

• Change in Relative Humidity (65–0 m)having importance ≈ 0.23, 

together explaining more than half of the total importance. This is fully consistent with the 

refractivity expression , where large vertical gradients of water vapour  

and relative humidity generate strong refractivity gradients and therefore large excursions 

in the k-factor. 

The static pressure terms at 65 m and at the surface (≈0.07 each) form the next tier, 

reflecting the contribution of dry-air stratification to the total refractivity gradient. Vertical 

gradients of potential temperature and air temperature (Δθ and ΔT, respectively) also rank 

highly (≈0.05 each), highlighting the role of thermal stability in modulating k, especially 

during nocturnal inversions and early-morning transition periods. 

Single-level quantities such as RH (surface and 65 m), dewpoint depression, water-vapour 

pressure at each level, and wind speed each carry modest but non-negligible importance 

(≈0.01–0.03), indicating that they refine the prediction but do not control it in isolation. 

Harmonic time descriptors (sine and cosine of the hour and day-of-year) and the four 

seasonal variables contribute very little individually (<0.01), implying that once the 

instantaneous thermodynamic profile is known, explicit calendar information adds only 

marginal extra magnitude. Overall, the feature-importance pattern confirms that k-factor 
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variability in the design range is governed chiefly by low-level moisture and stability 

gradients rather than by absolute surface conditions or season alone, in agreement with 

previous k-factor and refractivity-gradient studies. 

Table 7: Feature importance analysis of each input variable of the Random Forest 

prediction 

Feature Importance 

 Water Vapour Pressure 0.3193 

 Relative Humidity 0.2290 

Pressure (65 m) 0.0720 

Pressure (Surface) 0.0714 

 Potential Temperature 0.0553 

 Temperature 0.0537 

RH (65 m) 0.0294 

 Pressure 0.0164 

Dewpoint Depression 0.0154 

RH (Surface) 0.0150 

Potential Temperature (65 m) 0.0149 

Potential Temperature (Surface) 0.0131 

Air Temp (65 m) 0.0128 

WS (Surface) 0.0127 

Air Temp (Surface) 0.0122 

Water Vapour Pressure (65 m) 0.0106 

Day of Year (cos) 0.0092 

Water Vapour Pressure (Surface) 0.0083 

Dewpoint Temp (Surface) 0.0077 

Hour (cos) 0.0076 

Day of Year (sin) 0.0071 

Hour (sin) 0.0035 

Season (Summer: DJF) 0.0012 

Season (Autumn: MAM) 0.0010 

Season (Winter: JJA) 0.0006 

Season (Spring: SON) 0.0005 
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Figure 17: Random Forest tree model plot of the feature importance for the estimated 

k-factor within the design range  at 65 m. 

5. Conclusion 

This study has developed an eight-year (2016–2023) climatology and Random Forest 

model of the effective Earth radius factor, , at 65 m over Port Elizabeth using hourly 

surface and 65-m meteorological observations. The full-range statistics show that the site is 

super-refractive on average all year, but that a small number of hours are characterized by 

very large positive or negative  values associated with intense ducting or near-critical 

refractivity gradients. These extremes inflate skewness and kurtosis in almost every month 

and season, making full-range regression modelling numerically unstable and physically 

difficult to generalize. To obtain a robust predictive model for routine 5G or next 

generation 6G terrestrial link design, the analysis therefore focused on a design range 

, which retains more than 88% of the data and corresponds to standard and 

moderate anomalous refraction. Within this range, diurnal and seasonal analyses revealed 

that mildly to strongly super-refractive conditions dominate, with enhanced anomalies 

around sunrise and during late autumn–winter, in agreement with previous k-factor and 

refractivity-gradient studies over coastal and tropical regions. 

Using physically motivated predictors derived from near-surface thermodynamic structure, 

the Random Forest model achieved  on an independent test set, with RMSE ≈ 

0.21 and MAPE ≈ 6.8%. Feature-importance analysis demonstrated that vertical gradients 

of water-vapour pressure, relative humidity and potential temperature between the surface 

and 65 m are the dominant controls on  variability, while single-level quantities and 

seasonal indicators play secondary roles. These results confirm that low-level moisture and 

stability are key drivers of effective Earth radius factor over Port Elizabeth and that 

machine-learning models based solely on routinely available near-surface measurements 

can provide accurate, hour-by-hour estimates of  within the most operationally relevant 

range. 

Future work will extend this framework by incorporating higher-altitude profile 

information, performing detailed fade-margin analysis at sub-millimeter wave or 

microwave frequencies, and applying dedicated classification models to the rare but critical 

ducting regimes excluded from the present regression. 
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