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Abstract: The design and performance of terrestrial microwave and millimeter-wave links for 5G
and beyond depend strongly on the variability of the effective Earth radius factor, k, which
compactly represents the combined effects of atmospheric refraction and Earth curvature. Coastal
regions, in particular, often deviate substantially from the standard k = 43 assumption because of
strong temperature and humidity gradients that give rise to sub-refraction, super-refraction and
ducting. This paper presents an eight-year (2016-2023) climatology and data-driven model of the k-
factor at 65 m over Port Elizabeth, South Africa, using hourly meteorological data derived from
reanalysis-based profiles. First, full-range statistics, probability density functions, cumulative
distributions and regime frequencies are used to characterize the occurrence of standard, sub-
refractive, super-refractive and ducting conditions. The distribution is found to be strongly heavy-
tailed, with a small fraction of hours exhibiting extreme k values that are physically meaningful but
numerically ill-conditioned for regression. Based on physical and design considerations, a
modelling design range of 0.3 < k < 3.0 is adopted, retaining over 88% of the data and
corresponding to standard and moderate anomalous refraction. The overall mean refractivity
gradient at 65 m is about —57 N-units km™", corresponding to an annual mean k % 1.22,
indicative of predominantly super-refractive conditions. Seasonally, summer (DJF) exhibits the
largest mean k (=1.8) due to enhanced low-level moisture and stronger refractivity stratification,
while winter (JJA) shows the lowest mean (=0.4), consistent with drier, more stable boundary-layer
conditions and more frequent strong-gradient events. Spring and autumn yield intermediate means
(=1.2-1.5), reflecting transitional thermal and moisture structures. Within this range, detailed
diurnal, monthly and seasonal analyses show that Port Elizabeth is predominantly super-refractive,
with enhanced anomalies around sunrise and during late autumn to winter. A Random Forest
regression model driven by near-surface (10 m) and 65-m thermodynamic predictors achieves
R? ~ 0.77, RMSE =~ 0.21 and MAPE =~ 6.8% on an independent test set. Feature-importance
analysis reveals that vertical gradients of water-vapour pressure, relative humidity and potential
temperature between the surface and 65 m are the dominant controls on k variability. The resulting
model provides a practical tool for locally consistent k-factor estimation in Port Elizabeth, while the
rare, extreme ducting regimes are reserved for subsequent classification-based analyses and explicit
fade-margin studies at sub-millimeter wave and microwave frequencies.

Keywords: Effective Earth-Radius factor, Refractivity Gradient, Tropospheric Propagation, Surface
Ducting, Super-refraction, Terrestrial Microwave Link, Random Forest, 5G/6G Backhaul.

1. INTRODUCTION

Design and performance analysis of terrestrial microwave and millimetre-wave links for 5G
and next generation 6G communication networks, depend critically on the state of the lower
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troposphere, particularly the behaviour of the radio refractive index and its vertical gradient
near the Earth’s surface [1]-[3]. The effective Earth-radius factor, k, is a key radio-
meteorological parameter used in ITU-R P.530 to represent the combined influence of
atmospheric refraction and Earth curvature on line-of-sight propagation [4]. It provides a
convenient way to account for ray bending by replacing the true Earth with a fictitious
sphere of radius kR,, where R, is the physical Earth radius. Under standard atmospheric
conditions, the near-surface refractivity gradient is about -40 N-units km™?*, giving the
widely used effective Earth-radius factor of 4/3. However, coastal and tropical regions
often exhibit pronounced departures from this standard state due to strong temperature and
humidity gradients, leading to sub-refraction, super-refraction or ducting and, consequently,
large variability in k [5]-[7]. In practical terms, low-k (sub-refractive) conditions shorten
the radio horizon and increase diffraction loss, whereas high-k or ducting regimes extend
the horizon, enhance over-the-horizon interference and can produce deep, multipath-
induced fades on terrestrial links [1] & [8]. Accurate characterization of the effective Earth-
radius factor is therefore essential for determining radio horizon distances, predicting
diffraction fading, and specifying fade margins for high-capacity terrestrial backhaul and
access links.

A substantial body of work has examined refractivity, refractivity gradients and related
propagation parameters over different climatic zones. In West Africa, Adediji et al. (2011)
analyzed the distribution of refractivity gradient and k-factor over Akure, reporting strong
seasonal modulation associated with the West African monsoon [7]. Suleman et al. (2025)
and Sheu et al. (2022) extended such analyses to other Nigerian locations, showing that
coastal and humid stations experience more frequent super-refractive and ducting
conditions and, hence, larger variability in effective Earth radius [9] & [10]. In Nigeria,
Lawal and Omotoso (2023) used ERAS reanalysis to estimate point refractivity gradient
and geoclimatic factor at 70 m in Yenagoa, demonstrating that the coastal radio-climate is
dominated by super-refraction and ducting events that significantly increase predicted fade
depths [11].

Similar and more recent efforts have focused on mapping the k-factor over South Africa
and other climatically diverse regions. For Southern Africa, Afullo and Odedina (2006)
investigated k-factor distributions and diffraction fading, highlighting how non-standard
refraction can substantially alter predicted fade margins over long terrestrial paths [12].
Nyete and Afullo (2013) modelled and mapped the seasonal distribution of effective Earth-
radius factor across the country [13], while Odedina and Afullo (2007) applied spatial
interpolation techniques to estimate geoclimatic factor and fade depth over Southern Africa
[14]. Palmer and Baker (2004, 2021) used ground-based observations to predict both
monthly cumulative distributions and long-term averages of the effective Earth-radius
factor over South Africa, providing valuable large-scale design curves but without
explicitly resolving diurnal and low-level thermodynamic controls on k [15] & [16]. More
recently, Lawal et al. (2025) performed statistical estimation of point refractivity gradient
and geoclimatic factor at microwave antenna height in Port Elizabeth, showing that the
local coastal environment is strongly super-refractive and duct-prone at low levels [17].
Outside Africa, several studies have examined atmospheric ducts and refractive regimes in
other coastal and maritime climates: Mentes and Kaymaz (2007) investigated surface duct
conditions over Istanbul [18]; Zhou et al. (2022) analyzed the spatio-temporal distribution
of lower atmospheric ducts over seas adjacent to China [19]; Jiang et al. (2022) studied
mesoscale variability of surface ducts during Santa Ana wind episodes [20]; and
Gunashékar (2006) reviewed trans-horizon propagation caused by evaporation ducts [1].
Advanced retrieval techniques, such as refractivity-from-clutter methods, have also been
used to infer refractivity structure and ducting from marine radar echoes [2]. Collectively,
these works confirm that coastal and maritime environments exhibit complex, highly
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variable k-factor and ducting climatologies with strong implications for link design and
interference management.

This study aims to highlight the importance of detailed radio climatological characterisation
for both Earth—space and terrestrial links, and to underscore the need to extend similar,
high-resolution analyses to effective Earth-radius factor in climatically sensitive coastal
zones. Despite the contributions above, there is still limited work that: (i) quantifies the full
diurnal, monthly and seasonal variability of k at microwave-antenna height over a South
African coastal city using long-term, hourly data; and (ii) links this variability to physically
interpretable, low-level thermodynamic predictors through modern machine-learning
approaches. Therefore, several key radio-climate variables will be used to perform a
machine learning based modeling of the k-factor over South Africa and assess its impact on
South African satellite-link.

2. Uniqueness of the Present Study

Despite these advances, several gaps remain in the study of the effect of the k-factor over
Earth—space and terrestrial links. First, most existing k-factor studies over Southern Africa
have relied on radiosonde data with coarse temporal resolution and limited spatial coverage,
which may not adequately capture coastal processes such as sea-breeze circulations, marine
boundary-layer inversions and coastal upwelling. Second, the majority of works are purely
statistical and do not leverage modern machine-learning techniques to model the non-linear
relationships between meteorological variables, refractivity gradient and effective Earth
radius. Machine-learning methods such as Random Forests (RF) have been successfully
applied in atmospheric sciences for forecasting visibility, ducting conditions and other
propagation-relevant parameters because they can handle complex interactions, non-
linearities and mixed-scale predictors. However, their application to the direct prediction of
effective Earth-radius factor or refractivity-gradient regimes for terrestrial microwave
design remains largely unexplored, particularly in coastal South African environments.

This study addresses these gaps by developing a Random-Forest-based framework for
modelling the effective Earth-radius factor using refractivity gradient at 65 m over Port
Elizabeth (Ggeberha), a major coastal city on the south-eastern coast of South Africa. The
location is characterized by a temperate maritime climate, persistent sea-breeze systems and
frequent low-level inversions, making it a natural laboratory for investigating abnormal
refraction and k-factor variability. The present research is unique because it: (i) focuses on
a South African coastal city that has received limited attention compared to other coastal
cities, (ii) explicitly applies refractivity gradient at an operational antenna height (65 m) to
determine its corresponding effective earth radius factor, and (iii) integrates machine
learning to provide predictive capability and feature-importance diagnostics for a range of
k-factor that spans from standard to moderately anomalous conditions. The resulting k-
factor climatology and predictive models are expected to support more reliable inter-
terrestrial link design, refined fade-margin specifications and improved radio-climate
characterization for current and future terrestrial microwave networks in South Africa.

3. Methodology and Computational Analysis
3.1 Research Location and Data Source
This study focuses on Port Elizabeth (Gqeberha), a coastal city on the south-eastern
shoreline of South Africa at latitude and longitude of approximately 33.96°S, and 25.60°E
respectively. It is situated along Algoa Bay in the Eastern Cape Province. The region

experiences a temperate maritime climate with pronounced sea-breeze -circulations,
frequent low-level inversions and sharp humidity gradients, conditions that strongly

Page No: 3



Journal of Vibration Engineering(1004-4523) || Volume 26 Issue 12026 || www.jove.science

modulate near-surface radio refractivity and abnormal refraction events [17] & [21]. Port
Elizabeth is a quad-season location with four distinct seasons which are summer
(December, January and February), autumn (March, April and May), winter (June, July and
August) and spring (September, October and November) [22]. These features make Port
Elizabeth an ideal natural test site for effective Earth-radius factor (k) studies relevant to
coastal terrestrial links. Fight years hourly meteorological data covering 2016-2023 were
obtained from the fifth-generation European Centre for Medium-Range Weather Forecasts
(ECMWEF) reanalysis (ERAS). ERAS5 provides globally consistent fields of surface (10 m)
and pressure-level parameters on a 0.25° x 0.25° grid, including temperature, pressure,
dew-point temperature, relative humidity and wind components [23]. The grid cell whose
centre is closest to Port Elizabeth was extracted, and hourly data at the surface (10 m), 1000
hPa and 975 hPa were retained. These levels were selected to span the lowest 100 m above
ground, allowing robust interpolation of meteorological variables to a nominal microwave
antenna height of 65 m, in line with earlier refractivity-gradient and k-factor studies.

3.2 Computation of Effective Earth Radius Factor

Hourly surface refractivity N, and refractivity at 65 m were computed from air pressure P
(hPa), temperature T (K) and water-vapour pressure e (hPa) using equation (1) [6]:

N =77.6>+373x10°= (1)
T T2

where e was obtained from ERAS dew-point temperature or relative humidity via a
standard saturation vapour formulation. The hypsometric equation and hydrostatic balance
were used to relate pressure levels to geometric height, and meteorological variables were
vertically interpolated between the surface (10 m), 1000 hPa and 975 hPa to obtain
temperature, pressure, humidity and refractivity at 65 m above ground level. The point
near-surface refractivity gradient in the lowest 65 m, dN;, was then approximated by a
finite difference, dN; given by [6]:

dN, = Nes=%s [N-units km ] 2)

Zas—Zz

where N, and N denote refractivity at the surface (10 m) and 65 m, respectively, and z,
and z45 denote altitude at the surface (10 m) and 65 m, respectively. Under the assumption
of a spherically stratified atmosphere with small gradients, the effective Earth-radius factor
k was obtained from the linearized relation used in ITU and related literature [6]:

ko~ (1+-—=dN;(Nkm™))7, A3)

Equation (3) can be simply written as:

1 d.f\-']_ 1
157 dz

k(14 @)

Equation (4) links the near-surface refractivity gradient (?V/, ) to the curvature of radio
rays relative to the physical Earth radius. Hourly values of k at 65 m were then used to

construct diurnal, monthly, seasonal and annual statistics and to derive the 1-percentile
“worst-case” values required for radio-climate analysis and machine-learning modelling.

3.3 Relationship between k-factor and Atmospheric Refraction Regimes

Atmospheric refraction regimes can be expressed either in terms of the vertical refractivity
gradient dN /dz or equivalently via the effective Earth radius factor k. The approximate
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relationship is given in equation (4), with dN /dz in N-units/km. Under standard refraction,
dN /dz ~» —40 N/km and k ~ 4/3, which is widely used in ITU-R propagation models [6]
& [24]. Sub-refraction corresponds to weakly negative or positive gradients (e.g.
dN /dz > —40 N/km), giving k < 4/3, while super-refraction arises for more negative
gradients (e.g. dN fdz ~ —79 N/km), leading to k > 4/3and an effectively larger Earth
radius. For very strong negative gradients (dN /dz = —157 N/km), k can become very
large or even negative, indicating ducting, where radio rays are trapped or strongly bent
towards the surface. Climatological studies over African and coastal sites [7], [11], [25] &
[26] confirm that transitions between sub-refraction, standard, super-refraction and ducting
can therefore be compactly described in terms of characteristic k-factor ranges (typically
k < 0.7: sub-refraction/ducting; 0.7 = k = 1.7: standard to weakly anomalous; k = 1.7:
strong super-refraction), providing a convenient framework for classifying refractive
conditions in radio-link design.

3.4 Variables for k-Factor Modelling

The linear correlation and Random Forest model were driven by physically motivated
predictors that describe (i) near-surface meteorology, (ii) conditions at 65 m, (iii) vertical
thermodynamic gradients between the surface and 65 m, (iv) water-vapour pressure and
associated gradients, (v) potential temperature and static stability, and (vi) diurnal and
annual time harmonics. Table 1 shows the summary of all predictor variables used for
Random Forest k-factor modelling. All variables were either collected or computed from
the hourly ERAS5-derived and station-based fields over Port Elizabeth, South Africa.

Surface meteorology includes air temperature, dewpoint temperature, relative humidity,
surface pressure and wind speed. Dewpoint depression (°C) is defined as:

Taa=To — Tao. (5)

where T, is surface air temperature and T} , is surface dewpoint temperature.

At 65 m, analogous variables (air temperature, relative humidity and pressure) were derived
from the interpolated profiles used to compute the refractivity gradient and k-factor.
Vertical gradients were represented by simple level differences (65 m — surface) in
temperature, relative humidity, pressure, potential temperature and water-vapour pressure.
These differences capture the low-level thermal and moisture stratification that directly
controls the refractivity gradient and hence the effective Earth radius factor.

Water-vapour pressure at each level (in hPa) was obtained from temperature and relative
humidity as [6]:

RH

&= ES(T)’ (6)

100

with saturation vapour pressure given by:

17.62T
243.124T

e.(T) =6.112 exp ( ), (7)
where T is air temperature in °C.

Potential temperature (K) at each level was computed by [27]:

6 = Tg(C)"/%, (8)
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where Ty is absolute temperature, p is pressure (hPa), p, = 1000 hPa, R, is the gas
constant for dry air and c, is the specific heat at constant pressure. The difference
ABgs_19 = Bgs — 8,9 serves as a low-level static-stability indicator: positive values
indicate stable stratification, while negative values indicate convective or super-adiabatic
conditions.

Finally, diurnal and annual cycles were encoded using sinusoidal time harmonics given as:

2m hour

=, ©)
2m day

_ 2w day.
- ), Day of Year (cos) = cos (. Py ) (10)

2m

Hour (sin) = SiIl( 1;01.:), Hour (cos) = cos (

2
Day of Year (sin) = Sin(

which provide smooth representations of daily and seasonal variability without introducing
discontinuities at 23:00 or 31 December.

Table 1. Summary of predictor variables used for Random Forest k-factor modelling

Category Variable name Description Units
(used in text/plots)

Air Temperature Screen-level dry-bulb air °C
(Surface) temperature
Dewpoint Screen-level dewpoint °C
Temperature temperature
(Surface)
Dewpoint Depression T — T, 5; measure of surface °C

Surface meteorology (0 m) moisture deficit
Relative Humidity Screen-level relative humidity %
(Surface)
Pressure (Surface) Surface atmospheric pressure hPa
Wind Speed Horizontal wind speed at screen  ms —*
(Surface) level
Air Temperature (65  Air temperature at 65 m K
m) (absolute)

Meteorology at 65 m Relative Humidity Relative humidity at 65 m %
(65 m)
Pressure (65 m) Pressure at 65 m hPa
A Temperature (65—  Temperature difference between K
10 m) 65 m and surface
Vertical thermodynamic A Relative Humidity ~ Relative-humidity difference %
differences (65 m — surface) NEEEI(S)) between 65 m and surface

A Pressure (65-10 Pressure difference between 65  hPa
m) m and surface
Water Vapour Water-vapour pressure hPa
Pressure (Surface) computed from surface T;;, RH

Water-vapour pressure & Water Vapour Water-vapour pressure at 65 m hPa

gradients Pressure (65 m)
A Water Vapour Vapour-pressure difference hPa
Pressure (65—10 m) between 65 m and surface
Potential Surface potential temperature &, K
Temperature
(Surface)
Potential temperature & Potential Potential temperature at 65 m K
static stability Temperature (65 m) Bz

A Potential Stability indicator 8,5 — & K

Temperature (65—10
m)
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Hour (sin) sin (2w hour/24); diurnal phase —

Hour (cos) cos (2m hour/24); diurnal phase —

Day of Year (sin) sin (2w day /365); seasonal =
phase

Day of Year (cos) cos (2m day/365); seasonal =
phase

Time harmonics Season (Summer:

DIJF)

Season (Autumn: .l

MAM) Four seasonal indices across one 5
Season (Winter: JJA) SR

Season (Spring:

SON)

3.5 Application of Random Forest Algorithm

Random Forest (RF) is an ensemble of T decision trees {h.(x)}I_;, each trained on a
bootstrap sample with random feature subsets. The RF algorithm regression equation for
prediction is given as [28] & [29]:

F(x) = ZXT; b, (), (11)

where ¥#(x) is the predicted output (i.e. k) for input x (as indicated in Table 1) which is the
input feature vector, T is the total number of trees in the forest, and h,(x) is the prediction
of the t-th decision tree for input Xx. Each tree minimizes node impurity (e.g., variance)
when splitting.

The relationship between meteorological conditions and effective Earth-radius factor was
modelled using RF regression algorithm. The target variable was the hourly k value at 65
m, while predictors included interpolated temperature, pressure, relative humidity and
water-vapour pressure at surface and 65 m, and temporal descriptors such as hour of day,
day of year and season. The full 2016-2023 data set was divided into training (75%) and
testing (25%) subsets using a time-aware split to preserve temporal dependence. Model
hyperparameters (number of trees, maximum depth, minimum samples per split and leaf)
were tuned via grid search using k-fold cross-validation on the training set. Performance
was evaluated on the test set using the coefficient of determination (R?), root-mean-square
error (RMSE) and mean absolute error (MAE).

Random Forest was chosen as the sole machine-learning model for three main reasons.
First, RF can capture strongly non-linear and interactive relationships between predictors
and k without requiring explicit functional assumptions, which is advantageous for
complex coastal boundary-layer processes [30] & [31]. Second, RF is relatively robust to
multicollinearity and non-Gaussian predictor distributions, and it handles large feature sets
with minimal pre-processing, making it well suited to multi-level meteorological inputs
[32] & [33]. Third, RF offers built-in measures of variable importance (e.g., permutation
importance), which are valuable for physically interpreting which atmospheric variables
most strongly influence the effective Earth radius factor, complementing earlier statistical
analyses of refractivity gradient and geoclimatic factor [34] & [35]. Given these
advantages, and to maintain methodological focus and interpretability, alternative
algorithms (e.g., support vector regression, gradient boosting, and deep neural networks)
were not pursued in this initial study but may be considered in future comparative work.
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4. Results and Discussion
4.1 Overall Statistics of Effective Earth Radius Factor

Table 2 summarizes the bulk statistics of the refractivity gradient at 65 m and the
corresponding effective Earth-radius factor, k, for Port Elizabeth over 2016-2023. The
mean refractivity gradient is —57.5 N-units/km, with a median of —50.0 N-units/km. This
is substantially more negative than the “standard atmosphere’” gradient of about
—39 N-units/km, which corresponds to k # 4/3. The result indicates that, on average, the
lower troposphere over Port Elizabeth is more strongly super-refractive than the ITU-R
standard atmosphere, consistent with the coastal, maritime character of the site where cool,
moist marine layers and strong temperature—humidity gradients are frequently observed.
Similar tendencies towards more negative gradients and enhanced anomalous propagation
have been reported for other tropical and subtropical coastal locations in Africa [11].

The refractivity-gradient distribution is moderately left-skewed (skewness = —1.09) and
leptokurtic (kurtosis ~ 4.56), indicating a heavier left tail than a Gaussian distribution.
Physically, this means that episodes of very strong negative gradients (potentially
associated with surface-based or elevated ducts) occur more often than would be expected
under purely “normal’” conditions. These more negative gradients translate, through the
standard relation given in equations (3) and (4) into larger deviations of the k-factor from
its nominal value.

In contrast, the raw statistics of the k-factor in Table 2 reveal an extremely heavy-tailed
distribution. While the median k is 1.43, close to the classical standard value of about 1.33
— 1.5 reported in several climatological studies [7], [26] & [36], the mean is only 1.22
because it is pulled down by very large-magnitude negative outliers. The minimum and
maximum values (K & —1.43 x 10*, k.. & 4.1 X 10%) are far outside the range
normally used in link-design handbooks and ITU-R recommendations [4]. This behaviour
is reflected in the extreme skewness (—121) and kurtosis (~2.3x10%), implying that a very
small number of hours correspond to “critical’’ gradients for which the denominator in the
k-factor expression approaches zero and the resulting k becomes very large in magnitude.
Similar extreme-value behaviour has been noted in other k-factor climatologies based on
point refractivity gradients [7] & [36].

Table 2: Overall descriptive statistics of refractivity gradient and k-factor for Port Elizbeth
at 65 m across 2016 to 2023

Variable dv/dzat 65 m k-factor
(N-units/km)

Count 70124 70124
Mean -57.465 1.217
Std 46.931 72.36
Min -435.394 -14279.0
25% -75.623 1.234
50% -49.977 1.429
75% -32.803 1.812
Max 276.939 4108.01
Skewness -1.0854 -121.294
Kurtosis 4.5585 23333.74
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The full-range probability density function in Figure 1 clearly illustrates this heavy-tailed
structure. On the log-scaled ordinate, most hours cluster tightly around modest positive k-
values near unity, while a few isolated bins appear far out on the negative and positive axes.
These rare events correspond to strongly ducting or highly super-refractive situations where
the ray curvature far exceeds or falls well below the Earth’s curvature. Under such
conditions, EM waves can be trapped in surface or elevated ducts, producing over-the-
horizon propagation and severe departures from standard link-budget predictions.

Full-range PDF of Effective Earth Radius Factor k

105_

104_

103_

PDF

102_

101_

0]
10 T_] |

~15000 -12500 —10000 -7500 —5000 -2500 O 2500 5000
k-factor

Figure 1: Full-range PDF of the Effective Earth Radius factor (k-factor) for Port Elizabeth
over the years 2016 to 2023.

Table 3 and Figure 2 provide a complementary regime-based view by classifying each hour
into ducting, sub-refraction, standard refraction, and super-refraction based on its k-factor.
The analysis shows that ducting conditions occur in about 3.9% of hours, whereas super-
refraction is the most frequent regime, accounting for almost half (=49.4%) of the
observations. Standard refraction is realized in about 25.6% of hours, and sub-refraction in
roughly 21.0% of hours. This regime distribution confirms that Port Elizabeth is dominated
by non-standard refractive conditions, with a marked bias towards super-refractive and
ducting episodes. Such behaviour is typical of coastal and marine environments where
strong low-level humidity and temperature inversions are common, especially under
anticyclonic conditions or when cool marine air undercuts warmer continental air.

Table 3: k-factor refraction-regime frequency for Port Elizabeth over the entire period

Regime Count Percentage of
(Hours) Occurrence (%)

Ducting 2719 3.88
Sub-refraction 14759 21.05
Standard 17977 25.64
Super-refraction 34669 49.44
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From a propagation perspective, sustained super-refraction and occasional ducting are
particularly important for terrestrial microwave links. Super-refractive layers bend radio
waves more strongly towards the Earth, effectively increasing the apparent Earth radius
(large positive k), extending radio-horizon distances, and potentially increasing interference
between neighbouring cells or co-channel systems. Ducting (negative k) can trap energy
within a narrow vertical layer, enabling over-the-horizon propagation but also causing deep
fades and multipath effects when the duct intersects the link path. At the other extreme,
sub-refractive conditions (very low k) bend rays away from the Earth, effectively reducing
the radio horizon and enhancing diffraction fading; ITU-R P.530 explicitly links such low-
k episodes to increased clearance losses and fade depths on terrestrial microwave paths [4].

Frequency of refraction regimes based on k-factor

N w Y 6)]
o o o o
1 1 1 1

Percentage of hours (%)
=
o

o
I

ducting sub-refraction  standard super-refraction
Refraction Regime

Figure 2: Histogram chart of the frequency of refraction regimes based on k-factor for Port
Elizabeth over the years 2016 to 2023.

4.2 Design range selection for k-factor Prediction

The combination of Tables 2 to 3 and Figures 1 to 2 therefore provides the physical
rationale for the modelling approach adopted in this study. The full-range k -factor
distribution is dominated by a small fraction of extreme ducting and near-critical events
which yield physically meaningful but numerically ill-conditioned k values. When these
extremes are included in regression modelling, they act as high-leverage outliers that
severely degrade the performance of Random Forest and other supervised-learning models.
At the same time, Figures 1 and 2 show that the bulk of operationally relevant propagation,
that is, standard to moderately anomalous refraction, occurs for k values clustered around
order-unity magnitudes.

Figures 3 and 4 zoom into the central portion of the k-factor distribution (-80 < k< 80) and
superimpose the proposed design bounds at k = 0.3 and k = 3.0. In Figure 3, the
probability density function reveals a sharply peaked core centred slightly above k = 1,
with rapidly decaying tails. The dashed vertical lines at k = 0.3 and k = 3.0 clearly
bracket the high-density region where most hourly observations lie. Outside this interval
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the PDF collapses towards zero, indicating that very low or very high k-values occur only
rarely. The corresponding cumulative distribution in Figure 4 confirms this behaviour: the
CDF rises very steeply between k # 0.3 and k ~ 3, indicating that the vast majority of
hours are within this range, while the lower and upper tails contribute only a small fraction
of the total probability mass.

Zoomed PDF of k (=80 = k = 80) with design range 0.3-3.0

0.40 k=03
--- k=30

—80 -60 -40 -20 0 20 40 60 80
k-factor

Figure 3: Probability Density Function plot showing k-factor (—80 < k< 80) at 65 m with

design range 0.3 to 3.0.

Zoomed CDF of k (—80 = k = 80) with design range 0.3-3.0

1.0 k=03 |
—— k=3.0 ﬁ

I

0.8 :

I

I

0.6 :

a I

o I

0.4 1 :

[

I|

0.2 . :

I

i

0.0 :
80 -60 —40 —-20 0 20 40 60 80

k-factor

Figure 4: Cumulative Distribution Function plot showing k-factor (—80 < k< 80) at 65 m
with design range 0.3 to 3.0.

Page No: 11



Journal of Vibration Engineering(1004-4523) || Volume 26 Issue 12026 || www.jove.science

Table 4 and Figure 5 quantify this behaviour in terms of simple regime frequencies. Only
about 3.9% of the hours exhibit k < 0.3, which correspond to very strong sub-refraction
and ducting conditions; around 7.9% of the hours have k > 3.0, associated with
pronounced super-refraction and highly extended radio horizons. In contrast, approximately
88.2% of all hours fall within 0.3 < k < 3.0. Thus, the proposed design window retains
almost nine out of every ten observations, while excluding only a small minority of extreme
cases that are responsible for the pathological tails in the full-range statistics.

Table 4: Frequency of k-factor regimes relative to the selected design range at 65 m for Port
Elizabeth (2016-2023).

Refraction Regime Count Percentage
(Hours) (%)

k<0.3 2719 3.88

0.3=k=3.0 61840 88.19

k>3.0 5565 7.94

Frequency of k Regimes within the design range

1N o o0]
o @] (@]

Percentage of hours (%)
N
@)

k < 0.3 0.3 =k=3.0 k = 3.0

Figure 5: Frequency of the k-factor regimes within the selected design range of 0.3 to 3.0 at
65 m.

From a physical standpoint, the lower bound k = 0.3 removes the most severe sub-
refractive and ducting episodes in which rays are strongly bent away from, or trapped near,
the surface and the apparent Earth curvature become unrealistically large in magnitude. The
upper bound k = 3.0 excludes hours with very strong super-refraction, where the effective
Earth radius is several times the geometric radius and the radio horizon is pushed far
beyond normal design expectations. These rare regimes are crucial for interference and
over-the-horizon studies, but they are not representative of the typical operating conditions
that dominate the long-term performance of a 5G inter-terrestrial link.

Statistically, restricting the regression to 0.3 = k = 3.0 therefore achieves two objectives.
First, it focuses the Random Forest model on the dense, well-sampled region of the
distribution where the relationship between surface and 65-m meteorology and k is most
stable and where accurate prediction is most beneficial for routine link engineering.
Second, it prevents a small set of extreme points from dominating the loss function and
feature-importance metrics, leading to more robust and interpretable models. The rarer,
more extreme k-factor events (k < 0.3 or k = 3.0) are explicitly not discarded from the
climatological analysis; instead, they are reserved for a follow-up classification-based study
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in which their occurrence, physical drivers, and fade-margin implications can be treated
using methods tailored to highly non-Gaussian, regime-switching behaviour.

Following the practice in previous k-factor climatologies and ITU-R line-of-sight design
methods, which typically focus on moderate ranges such as k ~ 0.7-3 for reliability and
clearance calculations, this study therefore concentrates the regression analysis on a design
range of 0.3 < k < 3.0. This range retains the vast majority of hourly samples (over 88%
of the dataset) and encompasses standard and moderate anomalous conditions that are most
relevant for routine terrestrial radio link design in Port Elizabeth.

4.3. Diurnal Variations of Effective Earth Radius Factor

Figure 6 presents the overall diurnal cycle of the mean effective Earth radius factor, k, at 65
m for the full 2016 to 2023 period. The mean k-factor remains predominantly super-
refractive (i.e. k > 1) for most hours of the day, with mean values typically between about
1 and 2, consistent with the coastal-maritime setting of Port Elizabeth where moist marine
air and shallow inversions frequently enhance refractivity gradients. The most pronounced
departures from this background occur around local sunrise (=06:00 to 08:00), when the
mean curve exhibits a sharp negative excursion followed by a strong positive spike. These
features are produced by a small number of early-morning ducting events with very
negative refractivity gradients (low or even negative k) followed by rapidly strengthening
super-refraction as the nocturnal boundary layer begins to erode. Similar sunrise “transition
signatures’’, with enhanced occurrence of ducts and strong super-refraction in the first
hours after sunrise, have been reported in other tropical and subtropical sites [37], [38] &
[39]. Although such extremes are rare in an absolute sense, they strongly distort the hourly
mean, which is why the regression modelling later in the study is restricted to the more
stable design range 0.3 = k = 3.0.

Diurnal Variation of Effective Earth Radius Factor (2016-2023)

Mean k-factor

0 5 10 15 20
Hour of Day

Figure 6: Overall diurnal variations of the mean Effective Earth Radius k-factor at 65 m for
Port Elizabeth across the entire period under study.
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The seasonal breakdown in Figure 7 highlights how this diurnal behaviour is modulated by
synoptic-scale forcing. In all seasons, nighttime and early-morning hours (00:00-06:00) are
generally more super-refractive than the afternoon, reflecting the formation of stable, moist
layers close to the surface under radiative cooling. Winter months (JJA) show the most
dramatic anomalies: at around 07:00 the mean k-factor plunges to strongly negative values,
indicating frequent strong ducting during the morning transition under clear, high-pressure
conditions typical of South African coastal winters. Autumn season (MAM) exhibits a
contrasting peak with very large positive mean k near 08:00, suggesting occasional intense
super-refraction when cool marine air undercuts warmer continental air during sea-breeze
onset. Spring season (SON) is comparatively benign, with a smoother diurnal cycle and
mean k-values remaining mostly between 1 and 2, indicative of weaker inversions and
stronger daytime mixing. In general, summer months (DJF) relatively display a stable
diurnal cycle. Overall, these seasonal patterns are consistent with previous studies showing
that coastal stations tend to experience stronger and more frequent anomalous refractive
conditions in the cool, dry season than in the warm, convective season [11].

While Figures 6 and 7 are based on the full k-factor range and therefore reflect the
influence of extremes on the mean, Figure 8 focuses explicitly on the design interval
0.3 < k < 3.0 through seasonal cumulative probability distribution curves (CPDCs). All
four curves lie within a relatively narrow band, confirming that the central portion of the k-
distribution is broadly similar across seasons and dominated by moderately super-refractive
conditions. The 50-percent (median) k-values lie near 1.4—1.6 in all seasons, comparable to
the 1.4-1.6 range reported for other coastal and low-latitude sites [7] & [38]. The lower
decile of the distribution (=10% of time) typically falls between k = 1.0 and 1.2, while the
upper decile (=90% of time) is around k & 2.0-2.2, indicating that, within the design range,
the atmosphere dwells most of the time in mildly to strongly super-refractive states rather
than near the standard k = 4/3 value.

Diurnal Variation of k-factor by Season

101
5 4
S o0 v
W}
©
hD
7
c 7O
©
()
=
_10 _
Season
—e— DJF (Summer)
=151 JIA (Winter)
—— MAM (Autumn)
—&— SON (Spring)
_20 B T T T T T
0 5 10 15 20
Hour of Day

Figure 7: Diurnal variations of the mean k-factor by season for Port Elizabeth.
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Seasonal CPDC of diurnal k-factor at 65 m (2016-2023)
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Figure 8: Seasonal Cumulative Probability Distribution Curve of diurnal Variations of k-
factor at 65 m over the design range 0.3 to 3.0, for Port Elizabeth across the entire period
under study.

In general, Figures 6 to 8 show that: (i) Port Elizabeth exhibits a pronounced diurnal cycle
in k, with the most anomalous conditions occurring around sunrise; (ii) winter and, to a
lesser extent, autumn are the seasons most prone to extreme ducting and intense super-
refraction; and (iii) when attention is restricted to 0.3 < k < 3.0, the effective Earth radius
factor remains within a relatively well-behaved super-refractive band in all seasons. These
results reinforce the choice of the 0.3 to 3.0 design range for Random Forest modelling in
this study. It captures the dominant diurnal and seasonal modulation of k that controls
routine link performance, while leaving the rarer, more severe ducting regimes, most
prominent in winter sunrise hours, for a dedicated classification-based analysis in
subsequent work.

4.4 Monthly and Seasonal Variations of Effective Earth Radius Factor
4.4.1 Monthly Variations of Effective Earth Radius Factor

Table 5 and Figures 9 to 11 summarize the monthly behaviour of the k-factor at 65 m over
Port Elizabeth for 20162023 using the full data range. The monthly means shown in Table
5 and Figure 10 generally lie between about 0.2 and 2.6, indicating that, on average, the
troposphere is super-refractive all year, in agreement with the overall statistics discussed
earlier. However, the very large standard deviations and extreme values in Table 5 reveal
that each month contains a mixture of benign and highly anomalous refractive conditions.

The heatmap in Figure 9 makes this contrast especially clear. The row corresponding to the
mean shows that March, November and December have the largest monthly mean k-values
(=2-2.6), while May and July exhibit much lower means (0.2 and —0.92, respectively).
Physically, the summer to autumn months (DJF-MAM) are characterized by warmer, more
humid boundary layers and frequent sea-breeze intrusions, which tend to increase near-
surface refractivity and favour super-refraction. By contrast, late autumn and winter (May—
July) are dominated by cooler and often drier continental air masses with stronger nocturnal
inversions; these can generate both strong ducts and sub-refractive conditions, resulting in
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lower or even negative monthly mean k -values despite the predominance of super-
refractive hours.

The rows for standard deviation, skewness and kurtosis in Figure 9 and Table 5 highlight
how strongly the monthly distributions are influenced by a small number of extremes. The
month of July, for example, has a standard deviation of 197, a minimum of about —1.43x10*
and a maximum exceeding 3.3x10%, with strongly negative skewness (—63) and very large
kurtosis (~4.6x10?). Similar but less intense behaviour is seen in March, May, August and
September. These statistics indicate that most July hours fall within a relatively narrow,
mildly super-refractive band, but a few hours with very large-magnitude k-values dominate
the higher moments. Such rare events correspond to near-critical refractivity gradients in
which the denominator of the standard k-factor formula becomes very small, yielding
extremely high positive or negative k. This pattern is consistent with previous k-factor
climatologies in coastal and tropical environments, where extreme ducting or super-
refractive layers are infrequent but have a disproportionate statistical impact.

Table 5: Overall monthly descriptive statistics of k-factor for Port Elizabeth across the
years 2016 to 2023

Month Count Mean Std Min 25% 50% 75% Max Skewness  Kurtosis
Jan 5948 1.92 7.28 -75.37 1.28 1.43 1.80 460.21 45.41 2718.00
Feb 5424 1.88 33.06 -1104.07 1.30 1.48 1.89 2033.07 36.13 2875.38
Mar 5952 2.57 58.00 -1421.53 1.27 1.47 1.87 4108.01 57.52 4284.96
Apr 5760 0.92 31.68 -1781.89 1.17 1.41 1.84 606.95 -33.54 1874.76
May 5952 0.20 110.61 -7024.73 1.14 1.43 1.93 2738.86 -44.63 2918.70
Jun 5760 1.33 25.45 -1106.31 1.19 1.43 1.89 696.18 -16.62 901.30
Jul 5952 -0.92 197.13 -14278.9 1.18 1.43 1.84 3366.12 -62.98 4645.95
Aug 5952 0.75 47.50 -2740.04 1.21 1.39 1.73 1297.47 -38.66 2319.43
Sep 5760 1.18 42.09 -3125.00 1.21 1.38 1.69 342.38 -70.98 5288.55
Oct 5952 1.26 20.42 -1264.36 1.23 1.42 1.80 174.31 -46.66 2664.34
Nov 5760 1.97 11.96 -125.09 1.26 1.42 1.73 557.98 36.03 1519.18
Dec 5952 1.63 7.27 -234.03 1.29 1.44 1.80 321.87 1.36 1057.18

Monthly statistics of k-factor (Full Range)
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Figure 9: Monthly statistics heatmap of k-factor at 65 m for Port Elizabeth over the full
range of data across 2016 to 2023.

Figure 10 shows the monthly mean k-factor as a bar chart and mirrors the heatmap’s first
row. The highest mean values occur in March and November—December, suggesting that
late summer and early summer are the periods when effective Earth radius is largest, and
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radio horizons are most extended on average. The lowest means occur in May to July,
implying that 5G terrestrial links may be more vulnerable to sub-refractive fades and rapid
changes in path clearance during late autumn and mid-winter.

Figure 11 presents the monthly CPDCs on a logarithmic probability axis for the full k-
factor range. For all months, the CDFs rise steeply near modest positive k -values,
indicating that the bulk of each monthly distribution is concentrated in a narrow band
around k ~ 1-2. However, several months, particularly May, July and September, show
small but distinct probability “tails’’ extending to very large negative or positive k. On the
log scale, these tails correspond to probabilities well below 1% but with large magnitudes
on the abscissa. This confirms that extreme ducting and super-refraction are
climatologically rare but present in most months, and that their inclusion in regression
modelling would introduce strong non-Gaussian behaviour and numerical instability.
Similar heavy-tailed monthly CPDCs have been reported in other subtropical coastal
locations.

Monthly variation of k-factor at 65 m (Full Range)
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Figure 10: Monthly variation of k-factor at 65 m for Port Elizabeth over the full range of
data across 2016 to 2023.

Monthly CPDC of k-factor at 65 m (Full Range, 2016-2023)
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Figure 11: Monthly Cumulative Probability Distribution Curve of k-factor at 65 m for Port
Elizabeth over the full range of data across 2016 to 2023.
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Overall, the monthly analysis reinforces two key conclusions. First, Port Elizabeth exhibits
super-refractive conditions in all months, with late summer and early summer being the
most favourable for extended radio horizons. Second, extreme k-factor events occur in
many months but with very low frequency, which justifies treating them separately (via
classification modelling) while focusing regression on the more densely populated design
range 0.3 < k < 3.0 in this work.

4.4.2 Seasonal and Annual trends of Effective Earth Radius Factor

Figure 12 summarizes the seasonal variation of the mean k-factor using the full range of
data. The seasonal means are all greater than unity, confirming that Port Elizabeth is super-
refractive on average in every season. Summer (DJF) has the highest mean k (~1.8),
followed by spring (SON, ~1.5) and autumn (MAM, ~1.2), while winter (JJA) exhibits the
lowest seasonal mean (~0.37). This seasonal ordering is consistent with the monthly
statistics, where during summer and spring, enhanced low-level moisture and frequent
marine inversions over the Indian Ocean promote super-refractive gradients, increasing the
effective Earth radius. In winter, the prevalence of high-pressure systems, clear skies and
strong nocturnal cooling over land favours both ducting and sub-refractive conditions,
which reduce the seasonal mean despite the frequent occurrence of super-refraction at night
and around sunrise.

Seasonal variation of k-factor at 65 m (Full Range)
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Figure 12: Seasonal Variation of k-factor at 65 m for Port Elizabeth over the full range of
data across 2016 to 2023.

The annual trend in Figure 13 shows that the mean k-factor varies from year to year but
remains generally super-refractive. After a slightly negative mean in 2016, the annual
average rises to about 1.5-1.7 in 2017-2019, dips again in 2020, and then returns to values
above 1.6 in 2021-2023. This interannual variability likely reflects a combination of
changes in large-scale circulation patterns (e.g., El Nifio—Southern Oscillation phase,
regional pressure anomalies) and local mesoscale processes (e.g., sea-breeze characteristics,
frequency of coastal inversions) that modulate the frequency and intensity of anomalous
refractive conditions [18], [19] & [20]. Although a detailed attribution is beyond the scope
of this study, the absence of any long-term downward trend suggests that super-refractive
conditions, and thus extended radio horizons and potential interference paths, are a
persistent feature of the local climate over the study period.
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Annual trend of k-factor at 65 m (Full Range, 2016-2023)
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Figure 13: Annual trend of k-factor at 65 m for Port Elizabeth over the full range of data
across 2016 to 2023.

From an engineering standpoint, the seasonal and annual statistics in Figures 12 and 13
emphasize that link-design margins for 30-GHz terrestrial systems in Port Elizabeth cannot
be based solely on a fixed “standard”’ k = 4/3 value. Instead, link budgets and clearance
analyses should account for the strong seasonal modulation of k, with particular attention to
winter and late autumn, when the mean k is lowest and the probability of extreme ducting
or sub-refraction is highest. ITU-R P.530 [4] and related studies on k-factor and refractivity
gradients similarly recommend using locally derived statistics rather than a single global
standard when assessing path clearance and fade risk. In summary, the monthly, seasonal
and annual analyses demonstrate that Port Elizabeth is a super-refractive coastal site with
pronounced temporal structure: strong super-refraction in summer and spring, reduced
mean k and enhanced extremes in winter, and modest interannual variability. These
features buttress the design-range selection adopted for the Random Forest modelling in
this study.

4.5 Linear Correlation of k-factor to the atmospheric input variables

Figure 14 shows the Pearson correlation matrix between the k-factor (within the design
range 0.3 = k < 3.0) and all atmospheric input variables defined in the methodology
(surface and 65-m temperature, dewpoint temperature, relative humidity, pressure, wind
speed, their vertical differences, water-vapour pressure and potential temperature, together
with diurnal and annual harmonics and seasonal indicators).

Overall, the linear correlations between k and any single predictor are weak to at most
moderate, with the largest absolute coefficients associated with vertical gradients in
humidity, water-vapour pressure and potential temperature between the surface and 65 m,
while single-level quantities (e.g. surface temperature or pressure alone) show only small
correlations with k. This is physically consistent with the dependence of refractivity
gradient on vertical moisture and temperature structure rather than on absolute values at one
level. The relatively modest linear coefficients also confirm that no single variable can
explain the observed k-factor variability, thereby justifying the use of multivariate, non-
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linear Random Forest modelling in the next subsection rather than relying on simple linear
regression with one or two predictors.

Correlation matrix: k-factor vs input variables (0.3 = k = 3.0)
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Figure 14: Linear correlation matrix of k-factor against the input variables under the design
range 0.3 to 3.0.

4.6 Random Forest Prediction and Modeling of Effective Earth Radius Factor

Table 6 summarizes the performance of the Random Forest (RF) regression model applied
to the design range 0.3 < k = 3.0 using the physically based predictors described in the
methodology. The model attains a coefficient of determination R* = 0.77 on the
independent test set, with RMSE = 0.21 and MAE = 0.12 in k-units, corresponding to a
mean absolute percentage error of about 6.8%. The cross-validation statistics (mean CV
R* & 0.75 with a small standard deviation =0.04) indicate that the model skill is stable
across different time folds and not the result of overfitting.

Table 6: Performance metric analysis of the Random Forest prediction of k-factor within
the design range (0.3 = k = 3.0) at 65 m

Metric Value
R? 0.7661

RMSE 0.2120
MAE 0.1155

MAPE 6.8317

CV of mean R? 0.750309
CV of mean R? 0.041907

The scatter plot in Figure 15 further illustrates the model’s skill. Most test points cluster
tightly around the 1:1 line, especially in the core range k &~ 1.0-2.2, showing that the RF
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successfully captures the bulk of k-factor variability driven by low-level moisture and
temperature structure. There is some widening of the scatter at the highest and lowest k-
values within the design range, with a tendency to slightly underestimate the largest peaks
and overestimate the smallest troughs, which is typical of ensemble tree models in the
presence of skewed target distributions. Nevertheless, the residual spread remains modest in
absolute terms, confirming that the design-range restriction has effectively removed the
most problematic extremes while preserving physically meaningful variability for
regression.

RF Model: Observed vs Predicted k-factor (Test Dataset)
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Figure 15: Random Forest regression plot of the observed vs RF-predicted k-factor within
the design range (0.3 < k < 3.0) at 65 m for Port Elizabeth, over the test dataset (2022-
2023).

The time-series comparison for December 2023 in Figure 16 provides a more intuitive view
of model behaviour on operational time scales. The RF-predicted k-factor closely tracks the
observed hourly fluctuations throughout the month, reproducing both gradual multi-day
changes and rapid intra-day oscillations associated with diurnal heating, sea-breeze
passages and frontal activity. Peaks and dips in the observed series are generally well
captured, with only minor smoothing of the sharpest transitions. This indicates that, given
only surface and 65 m meteorological data, the RF model can reliably anticipate day-to-day
and hour-to-hour variations in effective Earth radius factor within the standard—moderate
anomaly regime.
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Observed vs RF-predicted k-factor in test set
December 2023 (0.3 =k = 3.0)
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Figure 16: Time series prediction plot of observed vs RF-predicted k-factor within the
design range (0.3 = k = 3.0) at 65 m for Port Elizabeth, over December 2023.

In summary, the RF results show that: (i) physically motivated low-level predictors are
sufficient to explain roughly three-quarters of the variance of k in the design range; (ii) the
model generalizes well in time; and (iii) the remaining errors are likely attributable to
unresolved vertical structure above 65 m, mesoscale dynamics and measurement noise.
These limitations motivate the more advanced classification and higher-altitude feature
augmentation proposed for the companion papers, but they do not detract from the
usefulness of the present RF model as a practical tool for k-factor estimation and link-
design studies over Port Elizabeth.

4.2. Feature Importance of Input Variables

Table 7 and Figure 17 show that the Random Forest model is primarily controlled by
vertical moisture and humidity structure between the surface and 65 m. The most influential
predictors are:

¢ Change in Water Vapour Pressure (65—0 m) with importance ~ 0.32 and

e Change in Relative Humidity (65—0 m)having importance ~ 0.23,

together explaining more than half of the total importance. This is fully consistent with the
refractivity expression N o< P/T + e/T?, where large vertical gradients of water vapour e
and relative humidity generate strong refractivity gradients and therefore large excursions
in the k-factor.

The static pressure terms at 65 m and at the surface (=0.07 each) form the next tier,
reflecting the contribution of dry-air stratification to the total refractivity gradient. Vertical
gradients of potential temperature and air temperature (A0 and AT, respectively) also rank
highly (=0.05 each), highlighting the role of thermal stability in modulating k, especially
during nocturnal inversions and early-morning transition periods.

Single-level quantities such as RH (surface and 65 m), dewpoint depression, water-vapour
pressure at each level, and wind speed each carry modest but non-negligible importance
(=0.01-0.03), indicating that they refine the prediction but do not control it in isolation.
Harmonic time descriptors (sine and cosine of the hour and day-of-year) and the four
seasonal variables contribute very little individually (<0.01), implying that once the
instantaneous thermodynamic profile is known, explicit calendar information adds only
marginal extra magnitude. Overall, the feature-importance pattern confirms that k-factor

Page No: 22



Journal of Vibration Engineering(1004-4523) || Volume 26 Issue 12026 || www.jove.science

variability in the design range is governed chiefly by low-level moisture and stability
gradients rather than by absolute surface conditions or season alone, in agreement with
previous k-factor and refractivity-gradient studies.

Table 7: Feature importance analysis of each input variable of the Random Forest
prediction

Feature Importance
A Water Vapour Pressure 0.3193
A Relative Humidity 0.2290
Pressure (65 m) 0.0720
Pressure (Surface) 0.0714
A Potential Temperature 0.0553
A Temperature 0.0537
RH (65 m) 0.0294
A Pressure 0.0164
Dewpoint Depression 0.0154
RH (Surface) 0.0150
Potential Temperature (65 m) 0.0149
Potential Temperature (Surface) 0.0131
Air Temp (65 m) 0.0128
WS (Surface) 0.0127
Air Temp (Surface) 0.0122
Water Vapour Pressure (65 m) 0.0106
Day of Year (cos) 0.0092
Water Vapour Pressure (Surface) 0.0083
Dewpoint Temp (Surface) 0.0077
Hour (cos) 0.0076
Day of Year (sin) 0.0071
Hour (sin) 0.0035
Season (Summer: DJF) 0.0012
Season (Autumn: MAM) 0.0010
Season (Winter: JJA) 0.0006
Season (Spring: SON) 0.0005
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Figure 17: Random Forest tree model plot of the feature importance for the estimated
k-factor within the design range (0.3 < k = 3.0) at 65 m.

5. Conclusion

This study has developed an eight-year (2016-2023) climatology and Random Forest
model of the effective Earth radius factor, k, at 65 m over Port Elizabeth using hourly
surface and 65-m meteorological observations. The full-range statistics show that the site is
super-refractive on average all year, but that a small number of hours are characterized by
very large positive or negative k values associated with intense ducting or near-critical
refractivity gradients. These extremes inflate skewness and kurtosis in almost every month
and season, making full-range regression modelling numerically unstable and physically
difficult to generalize. To obtain a robust predictive model for routine 5G or next
generation 6G terrestrial link design, the analysis therefore focused on a design range
0.3 = k < 3.0, which retains more than 88% of the data and corresponds to standard and
moderate anomalous refraction. Within this range, diurnal and seasonal analyses revealed
that mildly to strongly super-refractive conditions dominate, with enhanced anomalies
around sunrise and during late autumn—winter, in agreement with previous k-factor and
refractivity-gradient studies over coastal and tropical regions.

Using physically motivated predictors derived from near-surface thermodynamic structure,
the Random Forest model achieved R ~ 0.77 on an independent test set, with RMSE =
0.21 and MAPE = 6.8%. Feature-importance analysis demonstrated that vertical gradients
of water-vapour pressure, relative humidity and potential temperature between the surface
and 65 m are the dominant controls on k variability, while single-level quantities and
seasonal indicators play secondary roles. These results confirm that low-level moisture and
stability are key drivers of effective Earth radius factor over Port Elizabeth and that
machine-learning models based solely on routinely available near-surface measurements
can provide accurate, hour-by-hour estimates of k within the most operationally relevant
range.

Future work will extend this framework by incorporating higher-altitude profile
information, performing detailed fade-margin analysis at sub-millimeter wave or
microwave frequencies, and applying dedicated classification models to the rare but critical
ducting regimes excluded from the present regression.
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